Three-way fusion measures and three-level feature selections based on neighborhood decision systems

粒度 计算机科学 单调函数 特征(语言学) 特征选择 人工智能 规范化(社会学) 代数数 机器学习 启发式 度量(数据仓库) 数据挖掘 算法 数学 数学分析 哲学 社会学 操作系统 语言学 人类学
作者
Hongyuan Gou,Xianyong Zhang,Jilin Yang,Zhiying Lv
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110842-110842 被引量:5
标识
DOI:10.1016/j.asoc.2023.110842
摘要

Uncertainty measures exhibit algebraic and informational perspectives, and the two-view measure integration facilitates feature selections in classification learning. According to neighborhood decision systems (NDSs), two basic algorithms of feature selections (called JE-FS and DE-FS) already exist by using joint and decisional entropies, respectively, but they have advancement space for informationally fusing algebraic measures. In this paper on NDSs, three-way fusion measures are systematically constructed by combining three-way algebraic and informational measures, and thus three-level feature selections are hierarchically investigated by using corresponding monotonic and nonmonotonic measures and strategies. At first, the accuracy, granularity, and composite granularity-accuracy constitute three-way algebraic measures, while the joint, conditional, and decisional entropies (JE, CE, DE) formulate three-way informational measures. Then, three-way algebraic and informational measures are combined via normalization and multiplication, so three-way fusion measures based on JE, CE, DE are established. These new measures acquire granulation monotonicity and nonmonotonicity. Furthermore by relevant measures and monotonicity/nonmonotonicity, three-level feature selections (with null, single, and double fusion levels) related to JE, CE, DE are proposed, and corresponding heuristic algorithms are designed by monotonic and nonmonotonic principles. 4×3=12 selection algorithms comprehensively emerge, and they extend and improve current JE-FS and DE-FS. Finally by data experiments, related uncertainty measures and granulation properties are validated, and all 12 selection algorithms are compared in classification learning. As a result, new algorithms outperform JE-FS and DE-FS for classification performance, and the algorithmic improvements accord with the fusion-hierarchical deepening and entropy-systematic development of uncertainty measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoes发布了新的文献求助10
刚刚
imkhun1021发布了新的文献求助10
1秒前
woody发布了新的文献求助10
1秒前
2秒前
2秒前
淇淇发布了新的文献求助30
2秒前
简单的小土豆完成签到 ,获得积分10
3秒前
3秒前
田様应助lasak采纳,获得10
4秒前
llll完成签到,获得积分10
6秒前
小二郎应助by采纳,获得10
7秒前
7秒前
一YI发布了新的文献求助10
7秒前
gkfenomeno发布了新的文献求助10
8秒前
8秒前
田彬杰完成签到,获得积分10
10秒前
11秒前
11秒前
ximo应助ceeray23采纳,获得20
11秒前
熠旅完成签到,获得积分10
11秒前
无辜澜发布了新的文献求助10
11秒前
一YI完成签到,获得积分10
13秒前
Rocket完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
思源应助猪猪hero采纳,获得10
15秒前
16秒前
16秒前
Icey发布了新的文献求助300
18秒前
18秒前
无辜澜完成签到,获得积分10
18秒前
笨笨大侠完成签到,获得积分10
20秒前
llll发布了新的文献求助10
21秒前
Sia发布了新的文献求助10
21秒前
采薇发布了新的文献求助10
21秒前
22秒前
善学以致用应助笨笨大侠采纳,获得10
26秒前
科研通AI2S应助一切都好采纳,获得10
28秒前
28秒前
小梦完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490042
求助须知:如何正确求助?哪些是违规求助? 4588835
关于积分的说明 14421391
捐赠科研通 4520586
什么是DOI,文献DOI怎么找? 2476785
邀请新用户注册赠送积分活动 1462268
关于科研通互助平台的介绍 1435171