Discovering optimal flapping wing kinematics using active deep learning

运动学 计算机科学 拍打 Lift(数据挖掘) 涡流 人工神经网络 前沿 人工智能 控制理论(社会学) 航空航天工程 机械 物理 经典力学 机器学习 工程类 控制(管理)
作者
Baptiste Corban,Michaël Bauerheim,Thierry Jardin
出处
期刊:Journal of Fluid Mechanics [Cambridge University Press]
卷期号:974 被引量:5
标识
DOI:10.1017/jfm.2023.832
摘要

This paper focuses on the discovery of optimal flapping wing kinematics using a deep learning surrogate model for unsteady aerodynamics and multi-objective optimisation. First, a surrogate model of the unsteady forces experienced by a 3-D flapping wing is built, based on deep neural networks. The model is trained on a dataset of randomly generated kinematics simulated using direct numerical simulation (DNS). Once trained, the neural networks can quickly predict the unsteady lift and torques experienced by the wing, using sparse information on the kinematics. This fast surrogate model allows multi-objective optimisation to be performed. The resulting Pareto front consists of new kinematics that may be very different from the kinematics of the initial dataset. A few arbitrarily chosen kinematics on the Pareto front are thus simulated using DNS and used to enhance the database. The new dataset is used to train again the networks, and this active deep learning/optimisation framework is performed until convergence, obtained after only two iterations. Overall, this method reduced the cost of optimisation by 83 %. Results reveal two distinct families of motions. Kinematics promoting high efficiency are characterised by large stroke amplitudes and relatively low angles of attack, as observed for fruit flies, honeybees or hawkmoths. For those, lift production is driven by quasi-steady effects and the formation of a stable leading edge vortex. Kinematics promoting high lift are characterised by small stroke amplitudes and high angles of attack, reminiscent of mosquitoes. Lift production is driven by the rapid generation of vorticity at the trailing edge.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
3秒前
科研通AI5应助lili采纳,获得30
4秒前
文欣完成签到 ,获得积分10
5秒前
传奇3应助zzx采纳,获得10
6秒前
聪仔发布了新的文献求助10
6秒前
6秒前
6秒前
miles完成签到,获得积分10
7秒前
8秒前
gfhdf完成签到,获得积分10
10秒前
10秒前
11秒前
丘比特应助chris采纳,获得10
11秒前
洪对对发布了新的文献求助10
11秒前
12秒前
12秒前
今后应助米热采纳,获得10
12秒前
13秒前
13秒前
HITvagary完成签到,获得积分10
13秒前
陌上尘发布了新的文献求助10
13秒前
李爱国应助蕯匿采纳,获得10
14秒前
14秒前
郝冥发布了新的文献求助10
15秒前
hkh发布了新的文献求助10
16秒前
小杨发布了新的文献求助10
17秒前
zzx发布了新的文献求助10
17秒前
123发布了新的文献求助10
17秒前
17秒前
houxufeng完成签到 ,获得积分10
18秒前
xianhe发布了新的文献求助10
19秒前
CodeCraft应助哈理老萝卜采纳,获得10
19秒前
21秒前
Cher1she发布了新的文献求助10
22秒前
热血马儿完成签到,获得积分10
22秒前
chris发布了新的文献求助10
23秒前
如意的书白完成签到,获得积分20
24秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838497
求助须知:如何正确求助?哪些是违规求助? 3380812
关于积分的说明 10516014
捐赠科研通 3100441
什么是DOI,文献DOI怎么找? 1707496
邀请新用户注册赠送积分活动 821784
科研通“疑难数据库(出版商)”最低求助积分说明 772947