Large-scale pancreatic cancer detection via non-contrast CT and deep learning

胰腺癌 医学 对比度(视觉) 放射科 深度学习 比例(比率) 癌症检测 癌症 内科学 人工智能 地理 地图学 计算机科学
作者
Kai Cao,Yingda Xia,Jiawen Yao,Xu Han,Lukáš Lambert,Tingting Zhang,Wei Tang,Gang Jin,Hui Jiang,Xu Fang,Isabella Nogues,Xuezhou Li,Wenchao Guo,Yu Wang,Wei Fang,Mingyan Qiu,Yang Hou,Tomáš Kovárník,Michal Vočka,Yimei Lu
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:29 (12): 3033-3043 被引量:100
标识
DOI:10.1038/s41591-023-02640-w
摘要

Pancreatic ductal adenocarcinoma (PDAC), the most deadly solid malignancy, is typically detected late and at an inoperable stage. Early or incidental detection is associated with prolonged survival, but screening asymptomatic individuals for PDAC using a single test remains unfeasible due to the low prevalence and potential harms of false positives. Non-contrast computed tomography (CT), routinely performed for clinical indications, offers the potential for large-scale screening, however, identification of PDAC using non-contrast CT has long been considered impossible. Here, we develop a deep learning approach, pancreatic cancer detection with artificial intelligence (PANDA), that can detect and classify pancreatic lesions with high accuracy via non-contrast CT. PANDA is trained on a dataset of 3,208 patients from a single center. PANDA achieves an area under the receiver operating characteristic curve (AUC) of 0.986-0.996 for lesion detection in a multicenter validation involving 6,239 patients across 10 centers, outperforms the mean radiologist performance by 34.1% in sensitivity and 6.3% in specificity for PDAC identification, and achieves a sensitivity of 92.9% and specificity of 99.9% for lesion detection in a real-world multi-scenario validation consisting of 20,530 consecutive patients. Notably, PANDA utilized with non-contrast CT shows non-inferiority to radiology reports (using contrast-enhanced CT) in the differentiation of common pancreatic lesion subtypes. PANDA could potentially serve as a new tool for large-scale pancreatic cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
端庄易梦完成签到 ,获得积分10
刚刚
dudulu发布了新的文献求助10
刚刚
1秒前
lokiuiw发布了新的文献求助10
1秒前
1秒前
香蕉秋寒发布了新的文献求助10
2秒前
浅渊发布了新的文献求助10
2秒前
上上完成签到,获得积分10
2秒前
小蘑菇应助睡不完的觉采纳,获得10
3秒前
3秒前
SYLH应助勤劳的小刺猬采纳,获得10
3秒前
塞塞完成签到,获得积分10
3秒前
4秒前
xhf完成签到,获得积分10
4秒前
4秒前
5秒前
在水一方应助明天不打球采纳,获得10
5秒前
5秒前
RATHER发布了新的文献求助10
5秒前
July完成签到,获得积分10
5秒前
5秒前
6秒前
李健的小迷弟应助一棵葱采纳,获得10
7秒前
冷雨发布了新的文献求助10
7秒前
典雅的静发布了新的文献求助10
8秒前
爱吃肥牛发布了新的文献求助10
8秒前
kyoko886发布了新的文献求助10
8秒前
li完成签到,获得积分10
8秒前
YCW发布了新的文献求助10
9秒前
飞飞完成签到,获得积分20
9秒前
哇咔咔发布了新的文献求助40
9秒前
苗秋实发布了新的文献求助10
9秒前
z_king_d_23发布了新的文献求助10
10秒前
10秒前
Lucas应助萝卜脚踝采纳,获得10
11秒前
lll发布了新的文献求助10
11秒前
11秒前
科研通AI5应助妞妞采纳,获得10
11秒前
ZhouYW应助大壮采纳,获得10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790327
求助须知:如何正确求助?哪些是违规求助? 3334999
关于积分的说明 10273058
捐赠科研通 3051472
什么是DOI,文献DOI怎么找? 1674703
邀请新用户注册赠送积分活动 802741
科研通“疑难数据库(出版商)”最低求助积分说明 760846