Large-scale pancreatic cancer detection via non-contrast CT and deep learning

胰腺癌 医学 对比度(视觉) 放射科 深度学习 比例(比率) 癌症检测 癌症 内科学 人工智能 地理 地图学 计算机科学
作者
Kai Cao,Yingda Xia,Jiawen Yao,Xu Han,Lukáš Lambert,Tingting Zhang,Wei Tang,Gang Jin,Hui Jiang,Xu Fang,Isabella Nogues,Xuezhou Li,Wenchao Guo,Yu Wang,Wei Fang,Mingyan Qiu,Yang Hou,Tomáš Kovárník,Michal Vočka,Yimei Lu
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:29 (12): 3033-3043 被引量:112
标识
DOI:10.1038/s41591-023-02640-w
摘要

Pancreatic ductal adenocarcinoma (PDAC), the most deadly solid malignancy, is typically detected late and at an inoperable stage. Early or incidental detection is associated with prolonged survival, but screening asymptomatic individuals for PDAC using a single test remains unfeasible due to the low prevalence and potential harms of false positives. Non-contrast computed tomography (CT), routinely performed for clinical indications, offers the potential for large-scale screening, however, identification of PDAC using non-contrast CT has long been considered impossible. Here, we develop a deep learning approach, pancreatic cancer detection with artificial intelligence (PANDA), that can detect and classify pancreatic lesions with high accuracy via non-contrast CT. PANDA is trained on a dataset of 3,208 patients from a single center. PANDA achieves an area under the receiver operating characteristic curve (AUC) of 0.986-0.996 for lesion detection in a multicenter validation involving 6,239 patients across 10 centers, outperforms the mean radiologist performance by 34.1% in sensitivity and 6.3% in specificity for PDAC identification, and achieves a sensitivity of 92.9% and specificity of 99.9% for lesion detection in a real-world multi-scenario validation consisting of 20,530 consecutive patients. Notably, PANDA utilized with non-contrast CT shows non-inferiority to radiology reports (using contrast-enhanced CT) in the differentiation of common pancreatic lesion subtypes. PANDA could potentially serve as a new tool for large-scale pancreatic cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ann发布了新的文献求助10
1秒前
黄同学发布了新的文献求助10
1秒前
zho应助Seoyeong采纳,获得10
4秒前
snowskating发布了新的文献求助10
4秒前
6秒前
nanfang完成签到 ,获得积分10
6秒前
喜悦冬易完成签到,获得积分10
6秒前
搞怪的明辉完成签到,获得积分10
10秒前
爆米花应助自信小天鹅采纳,获得10
11秒前
ca0ca0发布了新的文献求助10
11秒前
天竹白完成签到,获得积分10
11秒前
13秒前
sirichen完成签到 ,获得积分10
14秒前
15秒前
观妙散人完成签到,获得积分10
15秒前
无花果应助习二采纳,获得10
15秒前
17秒前
17秒前
sun发布了新的文献求助10
18秒前
石莫言完成签到,获得积分0
19秒前
Owen应助Tophet采纳,获得30
19秒前
orixero应助怡然枫叶采纳,获得10
20秒前
20秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
不想干活应助科研通管家采纳,获得10
21秒前
不想干活应助科研通管家采纳,获得10
21秒前
小花排草应助科研通管家采纳,获得30
21秒前
不想干活应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
不想干活应助科研通管家采纳,获得10
21秒前
浅浪应助科研通管家采纳,获得10
22秒前
不想干活应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
不想干活应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
不想干活应助科研通管家采纳,获得10
22秒前
不想干活应助科研通管家采纳,获得10
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4154217
求助须知:如何正确求助?哪些是违规求助? 3690066
关于积分的说明 11656614
捐赠科研通 3382314
什么是DOI,文献DOI怎么找? 1856062
邀请新用户注册赠送积分活动 917672
科研通“疑难数据库(出版商)”最低求助积分说明 831094