This article studies the finite-time stabilization and finite-time H ∞ control problems for a class of Takagi–Sugeno fuzzy singular systems and proposes a finite-time H ∞ fuzzy controller to enable the system to cope with external disturbances, and the closed-loop system state converges to the equilibrium point. Before designing the controller, impulse controllability of the Takagi–Sugeno fuzzy singular system is discussed. Then, a finite-time H ∞ fuzzy controller is designed, and the finite-time stabilization conditions of the Takagi–Sugeno fuzzy singular system are expressed by linear matrix inequality. Finally, the simulation outcomes of a nonlinear singular system demonstrate that the designed controller has a good suppression effect on external disturbances, and the closed-loop system state converges to the equilibrium point in finite-time T and remains at the equilibrium point after T.