自愈水凝胶
材料科学
聚丙烯酰胺
聚合
单体
聚合物
化学工程
生物相容性
氧气
极限氧浓度
高分子化学
复合材料
化学
有机化学
工程类
冶金
作者
Allison L. Chau,Chelsea E. R. Edwards,Matthew E. Helgeson,Angela A. Pitenis
标识
DOI:10.1021/acsami.3c04636
摘要
Hydrogels are hydrated three-dimensional networks of hydrophilic polymers that are commonly used in the biomedical industry due to their mechanical and structural tunability, biocompatibility, and similar water content to biological tissues. The surface structure of hydrogels polymerized through free-radical polymerization can be modified by controlling environmental oxygen concentrations, leading to the formation of a polymer concentration gradient. In this work, 17.5 wt % polyacrylamide hydrogels are polymerized in low (0.01 mol % O2) and high (20 mol % O2) oxygen environments, and their mechanical and tribological properties are characterized through microindentation, nanoindentation, and tribological sliding experiments. Without significantly reducing the elastic modulus of the hydrogel (E* ≈ 200 kPa), we demonstrate an order of magnitude reduction in friction coefficient (from μ = 0.021 ± 0.006 to μ = 0.002 ± 0.001) by adjusting polymerization conditions (e.g., oxygen concentration). A quantitative analytical model based on polyacrylamide chemistry and kinetics was developed to estimate the thickness and structure of the monomer conversion gradient, termed the "surface gel layer". We find that polymerizing hydrogels at high oxygen concentrations leads to the formation of a preswollen surface gel layer that is approximately five times thicker (t ≈ 50 μm) and four times less concentrated (≈ 6% monomer conversion) at the surface prior to swelling compared to low oxygen environments (t ≈ 10 μm, ≈ 20% monomer conversion). Our model could be readily modified to predict the preswollen concentration profile of the polyacrylamide gel surface layer for any reaction conditions─monomer and initiator concentration, oxygen concentration, reaction time, and reaction media depth─or used to select conditions that correspond to a certain desired surface gel layer profile.
科研通智能强力驱动
Strongly Powered by AbleSci AI