计算机科学
卡尔曼滤波器
克里金
空间分析
滤波器(信号处理)
空间滤波器
维数(图论)
秩(图论)
随机效应模型
降维
算法
统计
数学
人工智能
机器学习
纯数学
内科学
组合数学
荟萃分析
医学
计算机视觉
作者
Noel Cressie,Tao Shi,Emily L. Kang
标识
DOI:10.1198/jcgs.2010.09051
摘要
Abstract Datasets from remote-sensing platforms and sensor networks are often spatial, temporal, and very large. Processing massive amounts of data to provide current estimates of the (hidden) state from current and past data is challenging, even for the Kalman filter. A large number of spatial locations observed through time can quickly lead to an overwhelmingly high-dimensional statistical model. Dimension reduction without sacrificing complexity is our goal in this article. We demonstrate how a Spatio-Temporal Random Effects (STRE) component of a statistical model reduces the problem to one of fixed dimension with a very fast statistical solution, a methodology we call Fixed Rank Filtering (FRF). This is compared in a simulation experiment to successive, spatial-only predictions based on an analogous Spatial Random Effects (SRE) model, and the value of incorporating temporal dependence is quantified. A remote-sensing dataset of aerosol optical depth (AOD), from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, is used to compare spatio-temporal FRF with spatial-only prediction. FRF achieves rapid production of optimally filtered AOD predictions, along with their prediction standard errors. In our case, over 100,000 spatio-temporal data were processed: Parameter estimation took 64.4 seconds and optimal predictions and their standard errors took 77.3 seconds to compute. Supplemental materials giving complete details on the design and analysis of a simulation experiment, the simulation code, and the MISR data used are available on-line. Keywords: : Aerosol optical depth (AOD)Fixed Rank Kriging (FRK)FRFSpatial Random Effects (SRE) modelSpatio-Temporal Random Effects (STRE) modelVector autoregressive (VAR) process
科研通智能强力驱动
Strongly Powered by AbleSci AI