斯氏假单胞菌
碱性磷酸酶
废水
聚乙烯醇
化学
磷
核化学
粪碱杆菌
生物量(生态学)
氮气
化学需氧量
假单胞菌
环境化学
有机化学
环境工程
细菌
生物
生态学
工程类
遗传学
作者
Yong-He Han,Wenxian Zhang,Wenxian Lu,Zhihua Zhou,Zhigang Zhuang,Min Li
标识
DOI:10.1080/09593330.2014.923516
摘要
Nitrogen (N) and phosphorus (P) are the two main factors causing water eutrophication. Immobilized micro-organisms have been widely studied in N and P removal. However, the effects of various immobilizing conditions on the removal efficiency of N and P using immobilized micro-organism beads (IMOBs) remain unclear. Polyvinyl alcohol (PVA) and alginate, as the two frequently immobilizing-used matrixes, were used for co-immobilizing Pseudomonas stutzeri YHA-13 and Alcaligenes sp. ZGED-12. PVA, alginate and CaCl₂contents, immobilization time and different wet biomass ratios of P. stutzeri to Alcaligenes sp. were conducted to elucidate their roles in and influences on the removal efficiency of N and P from synthetic wastewater. The application potential of IMOBs was estimated as well. Results showed that IMOBs prepared by cross-link of 4% PVA and 2-3% alginate with 5% CaCl₂and saturated boric acid solution for 10-15 min are the best ones in removal of N and P. Though IMOBs containing P. stutzeri and/or Alcaligenes sp. were capable of removal of the two nutrients, the highest removal efficiency was observed when the wet biomass ratio of P. stutzeri to Alcaligenes sp. was adjusted to 2:2. In addition, the IMOBs were of good ability to remove chemical oxygen demand (COD), NO(3)(-), NO(2)(-), NH(4)(+)- N, total nitrogen (TN) and total phosphorus (TP) from artificial wastewater. Of which, micro-organisms immobilized in matrixes were mainly responsible for NO(3)(-) and TP removal. Therefore, P. stutzeri YHA-13 and Alcaligenes sp. ZGED-12 are reliable bioresources to remove N and P from wastewater.
科研通智能强力驱动
Strongly Powered by AbleSci AI