阿利效应
极限环
霍普夫分叉
数学
极限(数学)
捕食
消光(光学矿物学)
人口
分岔图
分叉
功能性反应
应用数学
统计物理学
捕食者
控制理论(社会学)
数学分析
生态学
非线性系统
生物
物理
经济
人口学
量子力学
社会学
古生物学
控制(管理)
管理
作者
Pablo Aguirre,Eduardo González‐Olivares,Eduardo Sáez
标识
DOI:10.1016/j.nonrwa.2008.01.022
摘要
In this work, a bidimensional continuous-time differential equations system is analyzed which is derived from Leslie type predator–prey schemes by considering a nonmonotonic functional response and Allee effect on population prey. For ecological reason, we describe the bifurcation diagram of limit cycles that appear only at the first quadrant in the system obtained. We also show that under certain conditions over the parameters, the system allows the existence of a stable limit cycle surrounding an unstable limit cycle generated by Hopf bifurcation. Furthermore, we give conditions over the parameters such that the model allows long-term extinction or survival of both populations.
科研通智能强力驱动
Strongly Powered by AbleSci AI