Machine learning-based algorithms to predict severe psychological distress among cancer patients with spinal metastatic disease

医学 逻辑回归 背景(考古学) 疾病 机器学习 癌症 内科学 算法 随机森林 物理疗法 肿瘤科 人工智能 生物 古生物学 计算机科学
作者
Le Gao,Yuncen Cao,Xuyong Cao,Xiaolin Shi,M. Lei,Xiuyun Su,Yaosheng Liu
出处
期刊:The Spine Journal [Elsevier BV]
卷期号:23 (9): 1255-1269 被引量:11
标识
DOI:10.1016/j.spinee.2023.05.009
摘要

Metastatic spinal disease is an advanced stage of cancer patients and often suffer from terrible psychological health status; however, the ability to estimate the risk probability of this adverse outcome using current available data is very limited.The goal of this study was to propose a precise model based on machine learning techniques to predict psychological status among cancer patients with spinal metastatic disease.A prospective cohort study.A total of 1043 cancer patients with spinal metastatic disease were included.The main outcome was severe psychological distress.The total of patients was randomly divided into a training dataset and a testing dataset on a ratio of 9:1. Patients' demographics, lifestyle choices, cancer-related features, clinical manifestations, and treatments were collected as potential model predictors in the study. Five machine learning algorithms, including XGBoosting machine, random forest, gradient boosting machine, support vector machine, and ensemble prediction model, as well as a logistic regression model were employed to train and optimize models in the training set, and their predictive performance was assessed in the testing set.Up to 21.48% of all patients who were recruited had severe psychological distress. Elderly patients (p<0.001), female (p =0.045), current smoking (p=0.002) or drinking (p=0.003), a lower level of education (p<0.001), a stronger spiritual desire (p<0.001), visceral metastasis (p=0.005), and a higher Eastern Cooperative Oncology Group (ECOG) score (p<0.001) were significantly associated with worse psychological health. With an area under the curve (AUC) of 0.865 (95% CI: 0.788-0.941) and an accuracy of up to 0.843, the gradient boosting machine algorithm performed best in the prediction of the outcome, followed by the XGBooting machine algorithm (AUC: 0.851, 95% CI: 0.768-0.934; Accuracy: 0.826) and ensemble prediction (AUC: 0.851, 95% CI: 0.770-0.932; Accuracy: 0.809) in the testing set. In contrast, the AUC of the logistic regression model was only 0.836 (95% CI: 0.756-0.916; Accuracy: 0.783).Machine learning models have greater predictive power and can offer useful tools to identify individuals with spinal metastatic disease who are experiencing severe psychological distress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默孱完成签到 ,获得积分10
4秒前
15秒前
Jeffery426发布了新的文献求助10
20秒前
hongt05完成签到 ,获得积分10
21秒前
22秒前
欢喜板凳完成签到 ,获得积分10
23秒前
烤鸭本鸭完成签到,获得积分10
28秒前
大壮完成签到,获得积分10
33秒前
芝麻汤圆完成签到,获得积分10
41秒前
feijelly完成签到,获得积分10
43秒前
bu完成签到,获得积分10
44秒前
JankinWen完成签到 ,获得积分10
46秒前
奋斗寄文完成签到,获得积分10
47秒前
Clearly完成签到 ,获得积分10
47秒前
Fairy4964完成签到,获得积分10
50秒前
51秒前
自然之水完成签到,获得积分10
53秒前
54秒前
欣喜的缘分完成签到 ,获得积分10
55秒前
was_3完成签到,获得积分0
58秒前
keyan完成签到,获得积分10
59秒前
zzzwhy发布了新的文献求助10
1分钟前
1分钟前
石子完成签到 ,获得积分10
1分钟前
Hyy发布了新的文献求助10
1分钟前
冰汤圆完成签到 ,获得积分10
1分钟前
非而者厚应助Jeffery426采纳,获得20
1分钟前
开放访天完成签到 ,获得积分10
1分钟前
merrylake完成签到 ,获得积分10
1分钟前
1分钟前
jun完成签到,获得积分10
1分钟前
1分钟前
搬砖的化学男完成签到 ,获得积分0
1分钟前
卫东发布了新的文献求助10
1分钟前
Jeffery426完成签到,获得积分10
1分钟前
要笑cc完成签到,获得积分10
1分钟前
1分钟前
宣宣宣0733完成签到,获得积分10
1分钟前
胡质斌完成签到,获得积分10
1分钟前
略晓薛完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782723
求助须知:如何正确求助?哪些是违规求助? 3328104
关于积分的说明 10234483
捐赠科研通 3043104
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799702
科研通“疑难数据库(出版商)”最低求助积分说明 758994