Machine learning-based algorithms to predict severe psychological distress among cancer patients with spinal metastatic disease

医学 逻辑回归 背景(考古学) 疾病 机器学习 癌症 内科学 算法 随机森林 物理疗法 肿瘤科 人工智能 生物 古生物学 计算机科学
作者
Le Gao,Yuncen Cao,Xuyong Cao,Xiaolin Shi,Mingxing Lei,Xiuyun Su,Yaosheng Liu
出处
期刊:The Spine Journal [Elsevier BV]
卷期号:23 (9): 1255-1269 被引量:19
标识
DOI:10.1016/j.spinee.2023.05.009
摘要

Metastatic spinal disease is an advanced stage of cancer patients and often suffer from terrible psychological health status; however, the ability to estimate the risk probability of this adverse outcome using current available data is very limited.The goal of this study was to propose a precise model based on machine learning techniques to predict psychological status among cancer patients with spinal metastatic disease.A prospective cohort study.A total of 1043 cancer patients with spinal metastatic disease were included.The main outcome was severe psychological distress.The total of patients was randomly divided into a training dataset and a testing dataset on a ratio of 9:1. Patients' demographics, lifestyle choices, cancer-related features, clinical manifestations, and treatments were collected as potential model predictors in the study. Five machine learning algorithms, including XGBoosting machine, random forest, gradient boosting machine, support vector machine, and ensemble prediction model, as well as a logistic regression model were employed to train and optimize models in the training set, and their predictive performance was assessed in the testing set.Up to 21.48% of all patients who were recruited had severe psychological distress. Elderly patients (p<0.001), female (p =0.045), current smoking (p=0.002) or drinking (p=0.003), a lower level of education (p<0.001), a stronger spiritual desire (p<0.001), visceral metastasis (p=0.005), and a higher Eastern Cooperative Oncology Group (ECOG) score (p<0.001) were significantly associated with worse psychological health. With an area under the curve (AUC) of 0.865 (95% CI: 0.788-0.941) and an accuracy of up to 0.843, the gradient boosting machine algorithm performed best in the prediction of the outcome, followed by the XGBooting machine algorithm (AUC: 0.851, 95% CI: 0.768-0.934; Accuracy: 0.826) and ensemble prediction (AUC: 0.851, 95% CI: 0.770-0.932; Accuracy: 0.809) in the testing set. In contrast, the AUC of the logistic regression model was only 0.836 (95% CI: 0.756-0.916; Accuracy: 0.783).Machine learning models have greater predictive power and can offer useful tools to identify individuals with spinal metastatic disease who are experiencing severe psychological distress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张兰发布了新的文献求助10
2秒前
EKo发布了新的文献求助10
2秒前
萌酱发布了新的文献求助10
4秒前
4秒前
Ray完成签到,获得积分10
5秒前
6秒前
6秒前
8秒前
小高宽度发布了新的文献求助20
10秒前
花卷卷发布了新的文献求助30
11秒前
佰斯特威发布了新的文献求助30
11秒前
周不游发布了新的文献求助10
13秒前
15秒前
豆豆完成签到 ,获得积分10
15秒前
小蘑菇应助Marvin采纳,获得10
17秒前
18秒前
科研通AI5应助无心的平蝶采纳,获得10
20秒前
l0000完成签到,获得积分10
20秒前
YangLi发布了新的文献求助10
20秒前
本尼脸上褶子完成签到 ,获得积分10
20秒前
21秒前
思恩Shen发布了新的文献求助10
21秒前
王东完成签到,获得积分10
21秒前
觅柔完成签到 ,获得积分20
23秒前
23秒前
肖的花园完成签到 ,获得积分10
23秒前
黄哈哈发布了新的文献求助10
24秒前
YOKIII发布了新的文献求助10
25秒前
彭于晏应助张兰采纳,获得10
27秒前
28秒前
29秒前
赫连烙发布了新的文献求助10
29秒前
张牧之应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
隐形曼青应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
汉堡包应助科研通管家采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4752046
求助须知:如何正确求助?哪些是违规求助? 4097183
关于积分的说明 12676784
捐赠科研通 3809896
什么是DOI,文献DOI怎么找? 2103493
邀请新用户注册赠送积分活动 1128715
关于科研通互助平台的介绍 1005619