Wireless Deep Video Semantic Transmission

计算机科学 人工智能 无线 实时计算 电信
作者
Sixian Wang,Jincheng Dai,Zijian Liang,Kai Niu,Zhongwei Si,Chao Dong,Xiaoqi Qin,Ping Zhang
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (1): 214-229 被引量:47
标识
DOI:10.1109/jsac.2022.3221977
摘要

In this paper, we design a new class of high-efficiency deep joint source-channel coding methods to achieve end-to-end video transmission over wireless channels. The proposed methods exploit nonlinear transform and conditional coding architecture to adaptively extract semantic features across video frames, and transmit semantic feature domain representations over wireless channels via deep joint source-channel coding. Our framework is collected under the name deep video semantic transmission (DVST). In particular, benefiting from the strong temporal prior provided by the feature domain context, the learned nonlinear transform function becomes temporally adaptive, resulting in a richer and more accurate entropy model guiding the transmission of current frame. Accordingly, a novel rate adaptive transmission mechanism is developed to customize deep joint source-channel coding for video sources. It learns to allocate the limited channel bandwidth within and among video frames to maximize the overall transmission performance. The whole DVST design is formulated as an optimization problem whose goal is to minimize the end-to-end transmission rate-distortion performance under perceptual quality metrics or machine vision task performance metrics. Across standard video source test sequences and various communication scenarios, experiments show that our DVST can generally surpass traditional wireless video coded transmission schemes. The proposed DVST framework can well support future semantic communications due to its video content-aware and machine vision task integration abilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小马甲应助纯情的傲儿采纳,获得10
2秒前
slow发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
罗氏集团发布了新的文献求助10
6秒前
顾矜应助登山人采纳,获得10
6秒前
科研通AI5应助科研小白采纳,获得10
6秒前
6秒前
今后应助Ye采纳,获得10
6秒前
123完成签到,获得积分10
6秒前
今后应助孤鸿采纳,获得10
6秒前
情怀应助鹅鹅采纳,获得200
7秒前
科研通AI5应助郑恩熙采纳,获得10
7秒前
zzz完成签到,获得积分10
7秒前
7秒前
7秒前
9秒前
欧阳同志完成签到,获得积分20
9秒前
10秒前
SHY发布了新的文献求助10
10秒前
AI读文献的小新完成签到,获得积分10
10秒前
思源应助文艺的小海豚采纳,获得30
10秒前
tt发布了新的文献求助10
10秒前
酷波er应助lxt819采纳,获得10
11秒前
11秒前
dfxgsw发布了新的文献求助10
11秒前
ljs关闭了ljs文献求助
11秒前
可爱的函函应助FDD采纳,获得100
12秒前
12秒前
所所应助wq采纳,获得10
12秒前
Sirius发布了新的文献求助10
12秒前
踏实蜜粉完成签到 ,获得积分10
13秒前
李健的小迷弟应助julia采纳,获得10
13秒前
打打应助Cecilia采纳,获得10
14秒前
我是老大应助slow采纳,获得10
14秒前
华仔应助悟123采纳,获得10
14秒前
14秒前
灬灬完成签到 ,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794983
求助须知:如何正确求助?哪些是违规求助? 3339916
关于积分的说明 10298125
捐赠科研通 3056504
什么是DOI,文献DOI怎么找? 1677041
邀请新用户注册赠送积分活动 805105
科研通“疑难数据库(出版商)”最低求助积分说明 762333