Temperature Adaptive Transfer Network for Cross-Domain State-of-Charge Estimation of Li-Ion Batteries

领域(数学分析) 电池(电) 符号 计算机科学 学习迁移 卷积神经网络 算法 人工智能 数学 物理 功率(物理) 算术 量子力学 数学分析
作者
Liyuan Shen,Jingjing Li,Jieyan Liu,Lei Zhu,Heng Tao Shen
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:38 (3): 3857-3869 被引量:17
标识
DOI:10.1109/tpel.2022.3220760
摘要

State-of-charge (SOC) estimation plays an important role in the battery management system, which serves to ensure the safety of batteries. Existing data-driven methods for SOC estimation of Li-ion batteries rely on massive labeled data and the assumption that training and testing data share the same distribution. However, in the real world, there is only unlabeled target data and there exists distribution discrepancy caused by external or internal factors such as varying ambient temperatures and battery aging, which makes existing methods invalid. To address the challenges, a temperature adaptive transfer network (TATN) is proposed, which can mitigate domain shift adaptively by mapping data to high-dimensional feature spaces. The TATN consists of pretraining stage and transfer stage. At the pretraining stage, 2-D convolutional neural network and bidirectional long short-term memory are used for temporal feature extraction. At the transfer stage, adversarial adaptation and maximum mean discrepancy are utilized to minimize domain divergence. Furthermore, a novel label-selection method is proposed to select reliable pseudolabels. Extensive transfer experiments are performed. Notably, compared with other methods, the TATN reduces average MAE and root mean square error by $ 66\%$ and $ 78\%$ under semisupervised scenario, $ 71\%$ and $ 68\%$ under unsupervised scenario, and $ 52\%$ and $ 42\%$ at online testing. The results indicate that the TATN can achieve state-of-the-art performance in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XL应助负责纲采纳,获得10
刚刚
2秒前
湖医小朱完成签到,获得积分10
4秒前
冰魂应助科研通管家采纳,获得20
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
胡金涛发布了新的文献求助10
7秒前
星禾吾完成签到,获得积分10
7秒前
8秒前
汉堡包应助瘦瘦白昼采纳,获得10
10秒前
zxx完成签到 ,获得积分10
11秒前
11秒前
12秒前
肖珂完成签到,获得积分10
13秒前
April发布了新的文献求助10
14秒前
16秒前
科研通AI5应助博修采纳,获得10
16秒前
王大夫发布了新的文献求助10
16秒前
Thenxzhu发布了新的文献求助10
17秒前
顺心未来发布了新的文献求助10
21秒前
科研通AI5应助包容沛芹采纳,获得10
21秒前
26秒前
无恙完成签到,获得积分20
26秒前
28秒前
韩军军完成签到 ,获得积分10
28秒前
29秒前
慕青应助liugm采纳,获得10
30秒前
30秒前
彭于晏应助可乐味橘子采纳,获得10
31秒前
31秒前
31秒前
biogarfield发布了新的文献求助10
32秒前
太阳雨完成签到,获得积分10
32秒前
32秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Pteromalidae 600
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842773
求助须知:如何正确求助?哪些是违规求助? 3384782
关于积分的说明 10537332
捐赠科研通 3105356
什么是DOI,文献DOI怎么找? 1710232
邀请新用户注册赠送积分活动 823561
科研通“疑难数据库(出版商)”最低求助积分说明 774137