Error-based Implicit Learning in Language: The Effect of Sentence Context and Constraint in a Repetition Paradigm

判决 约束(计算机辅助设计) 背景(考古学) 重复(修辞手法) 计算机科学 自然语言处理 人工智能 词(群论) 心理学 认知心理学 语音识别 语言学 数学 古生物学 哲学 几何学 生物
作者
Alice Hodapp,Milena Rabovsky
出处
期刊:Journal of Cognitive Neuroscience [The MIT Press]
卷期号:36 (6): 1048-1070 被引量:3
标识
DOI:10.1162/jocn_a_02145
摘要

Abstract Prediction errors drive implicit learning in language, but the specific mechanisms underlying these effects remain debated. This issue was addressed in an EEG study manipulating the context of a repeated unpredictable word (repetition of the complete sentence or repetition of the word in a new sentence context) and sentence constraint. For the manipulation of sentence constraint, unexpected words were presented either in high-constraint (eliciting a precise prediction) or low-constraint sentences (not eliciting any specific prediction). Repetition-induced reduction of N400 amplitudes and of power in the alpha/beta frequency band was larger for words repeated with their sentence context as compared with words repeated in a new low-constraint context, suggesting that implicit learning happens not only at the level of individual items but additionally improves sentence-based predictions. These processing benefits for repeated sentences did not differ between constraint conditions, suggesting that sentence-based prediction update might be proportional to the amount of unpredicted semantic information, rather than to the precision of the prediction that was violated. In addition, the consequences of high-constraint prediction violations, as reflected in a frontal positivity and increased theta band power, were reduced with repetition. Overall, our findings suggest a powerful and specific adaptation mechanism that allows the language system to quickly adapt its predictions when unexpected semantic information is processed, irrespective of sentence constraint, and to reduce potential costs of strong predictions that were violated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活着发布了新的文献求助10
6秒前
赎罪完成签到 ,获得积分10
9秒前
香蕉觅云应助beyondjun采纳,获得10
10秒前
ttgx完成签到,获得积分10
10秒前
任梓宁完成签到 ,获得积分10
10秒前
14秒前
MM发布了新的文献求助10
16秒前
chemhub完成签到,获得积分10
17秒前
隐形曼青应助wyh采纳,获得10
17秒前
liyanglin完成签到 ,获得积分10
21秒前
完美世界应助懒羊羊大王采纳,获得10
24秒前
qiuhai完成签到,获得积分10
24秒前
活着发布了新的文献求助10
24秒前
25秒前
傲娇的棉花糖完成签到 ,获得积分10
29秒前
29秒前
小罗完成签到 ,获得积分10
30秒前
居居子完成签到,获得积分10
31秒前
wyh发布了新的文献求助10
32秒前
科研通AI5应助myl采纳,获得50
32秒前
清爽的碧空完成签到,获得积分10
35秒前
薛定谔的猫完成签到,获得积分10
37秒前
在水一方应助踏实的绿柏采纳,获得10
38秒前
清醒完成签到,获得积分10
39秒前
40秒前
淡定的半鬼完成签到,获得积分10
40秒前
xixilulixiu完成签到 ,获得积分10
41秒前
cjh发布了新的文献求助10
41秒前
42秒前
若水完成签到 ,获得积分10
43秒前
HP发布了新的文献求助10
44秒前
慕青应助52pry采纳,获得10
44秒前
彭于晏应助123采纳,获得10
44秒前
fang完成签到 ,获得积分10
46秒前
47秒前
英姑应助阿娟儿采纳,获得10
47秒前
Song0558发布了新的文献求助10
47秒前
丿淘丶Tao丨完成签到,获得积分10
49秒前
福桃完成签到,获得积分10
49秒前
牧百川发布了新的文献求助10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779522
求助须知:如何正确求助?哪些是违规求助? 3325020
关于积分的说明 10220858
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668632
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522