Machine Learning Model Based on Radiomics for Preoperative Differentiation of Jaw Cystic Lesions

接收机工作特性 医学 随机森林 逻辑回归 人工智能 鉴别诊断 回顾性队列研究 决策树 无线电技术 放射科 机器学习 试验预测值 特征选择 预测值 外科 计算机科学 病理 内科学
作者
Songling Fang,Yuepeng Wang,Yilin He,Taihui Yu,Yutong Xie,Yongkang Cai,Wenhao Li,Yan Wang,Zhiquan Huang
出处
期刊:Otolaryngology-Head and Neck Surgery [SAGE]
卷期号:170 (6): 1561-1569 被引量:2
标识
DOI:10.1002/ohn.744
摘要

Abstract Objective This study aims to use machine learning techniques together with radiomics methods to build a preoperative predictive diagnostic model from spiral computed tomography (CT) images. The model is intended for the differential diagnosis of common jaw cystic lesions. Study Design Retrospective, case‐control study. Setting This retrospective study was conducted at Sun Yat‐sen Memorial Hospital of Sun Yat‐sen University (Guangzhou, Guangdong, China). All the data used to build the predictive diagnostic model were collected from 160 patients, who were treated at the Department of Oral and Maxillofacial Surgery at Sun Yat‐sen Memorial Hospital of Sun Yat‐sen University between 2019 and 2023. Methods We included a total of 160 patients in this study. We extracted 107 radiomic features from each patient's CT scan images. After a feature selection process, we chose 15 of these radiomic features to construct the predictive diagnostic model. Results Among the preoperative predictive diagnostic models built using 3 different machine learning methods (support vector machine, random forest [RF], and multivariate logistic regression), the RF model showed the best predictive performance. It demonstrated a sensitivity of 0.923, a specificity of 0.643, an accuracy of 0.825, and an area under the receiver operating characteristic curve of 0.810. Conclusion The preoperative predictive model, based on spiral CT radiomics and machine learning algorithms, shows promising differential diagnostic capabilities. For common jaw cystic lesions, this predictive model has potential clinical application value, providing a scientific reference for treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
陈华伟完成签到,获得积分10
3秒前
yyanxuemin919发布了新的文献求助10
4秒前
虞不斜完成签到 ,获得积分10
5秒前
5秒前
浮游应助Lily采纳,获得10
6秒前
Vito完成签到,获得积分10
7秒前
情怀应助又是一年采纳,获得10
9秒前
LTT发布了新的文献求助10
9秒前
11秒前
11秒前
zhouzhou完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
15秒前
16秒前
reasonxin发布了新的文献求助10
17秒前
18秒前
18秒前
赵jl完成签到 ,获得积分10
19秒前
木木完成签到 ,获得积分10
20秒前
20秒前
求助人员发布了新的文献求助10
20秒前
忧郁绿柏发布了新的文献求助10
22秒前
24秒前
今后应助陈晨采纳,获得10
24秒前
27秒前
该干饭了发布了新的文献求助10
27秒前
29秒前
情怀应助shen采纳,获得30
29秒前
NN完成签到,获得积分10
30秒前
温医第一打野完成签到,获得积分10
31秒前
32秒前
早安发布了新的文献求助10
33秒前
浮游应助该干饭了采纳,获得10
34秒前
35秒前
BowieHuang应助光亮的太阳采纳,获得10
36秒前
科目三应助忧郁绿柏采纳,获得10
37秒前
小肥羊完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563681
求助须知:如何正确求助?哪些是违规求助? 4648553
关于积分的说明 14685532
捐赠科研通 4590511
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491204
关于科研通互助平台的介绍 1462478