Identification of shared potential diagnostic markers in asthma and depression through bioinformatics analysis and machine learning

列线图 微阵列 计算生物学 基因 免疫系统 微阵列分析技术 支持向量机 基因表达谱 哮喘 生物信息学 基因表达 生物 医学 机器学习 免疫学 肿瘤科 遗传学 计算机科学
作者
Hui Jiang,Chang-yong Fu
出处
期刊:International Immunopharmacology [Elsevier BV]
卷期号:133: 112064-112064
标识
DOI:10.1016/j.intimp.2024.112064
摘要

There is mounting evidence that asthma might exacerbate depression. We sought to examine candidates for diagnostic genes in patients suffering from asthma and depression. Microarray data were downloaded from the Gene Expression Omnibus(GEO) database and used to screen for differential expressed genes(DEGs) in the SA and MDD datasets. A weighted gene co-expression network analysis(WGCNA) was used to identify the co-expression modules of SA and MDD. The least absolute shrinkage and selection operatoes(LASSO) and support vector machine(SVM) were used to determine critical biomarkers. Immune cell infiltration analysis was used to investigate the correlation between immune cell infiltration and common biomarkers of SA and MDD. Finally, validation of these analytical results was accomplished via the use of both in vivo and in vitro studies. The number of DEGs that were included in the MDD dataset was 5177, whereas the asthma dataset had 1634 DEGs. The intersection of DEGs for SA and MDD included 351 genes, the strongest positive modules of SA and MDD was 119 genes, which played a function in immunity. The intersection of DEGs and modular hub genes was 54, following the analysis using machine learning algorithms,three hub genes were identified and employed to formulate a nomogram and for the evaluation of diagnostic effectiveness, which demonstrated a significant diagnostic value (area under the curve from 0.646 to 0.979). Additionally, immunocyte disorder was identified by immune infiltration. In vitro studies have revealed that STK11IP deficiency aggravated the LPS/IFN-γinduced up-regulation in M1 macrophage activation. Asthma and MDD pathophysiology may be associated with alterations in inflammatory processes and immune pathways. Additionally, STK11IP may serve as a diagnostic marker for individuals with the two conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
yige发布了新的文献求助10
刚刚
1秒前
淡然士晋完成签到,获得积分10
2秒前
暗月皇发布了新的文献求助10
2秒前
糊涂的元珊完成签到 ,获得积分10
2秒前
Mry完成签到,获得积分10
3秒前
哈哈哈哈嘻嘻嘻完成签到 ,获得积分10
6秒前
日出发布了新的文献求助10
6秒前
成诗怡发布了新的文献求助10
6秒前
KXC完成签到,获得积分20
6秒前
huahua完成签到 ,获得积分10
9秒前
田様应助Oasis采纳,获得10
9秒前
阳光完成签到,获得积分10
11秒前
冲冲冲完成签到,获得积分10
11秒前
暖羊羊Y完成签到 ,获得积分10
13秒前
顺其自然_666888完成签到,获得积分10
13秒前
wy1693207859完成签到,获得积分10
14秒前
邓佳鑫Alan应助芷兰丁香采纳,获得10
14秒前
成诗怡完成签到,获得积分10
15秒前
Yu完成签到,获得积分10
18秒前
渣渣凡完成签到,获得积分10
19秒前
20秒前
zhouyan完成签到,获得积分10
23秒前
爱学习完成签到,获得积分10
26秒前
酷波er应助小四喜采纳,获得10
31秒前
嘻嘻完成签到 ,获得积分10
33秒前
38秒前
子春完成签到 ,获得积分10
39秒前
忐忑的黑猫应助amupf采纳,获得10
39秒前
M3L2完成签到,获得积分10
40秒前
Kate发布了新的文献求助10
43秒前
44秒前
舒心丹亦完成签到,获得积分20
44秒前
yahong完成签到 ,获得积分20
45秒前
爆米花应助科研通管家采纳,获得10
45秒前
小马甲应助科研通管家采纳,获得30
45秒前
深情安青应助科研通管家采纳,获得10
46秒前
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781110
求助须知:如何正确求助?哪些是违规求助? 3326526
关于积分的说明 10227602
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734