A Rearrangement and Restore Mixer Model for Target-Oriented Multimodal Sentiment Classification

计算机科学 人工智能 情绪分析 模式识别(心理学) 自然语言处理
作者
Jia Li,Tinghuai Ma,Huan Rong,Victor S. Sheng,Xuejian Huang,Xintong Xie
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tai.2023.3341879
摘要

With the development of fine-grained multimodal sentiment analysis tasks, target-oriented multimodal sentiment analysis has received more attention, which aims to classify the sentiment of target with the help of textual and associated image features. Existing methods focus on exploring fine-grained image features and incorporate transformer-based complex fusion strategies, while ignoring the heavy computational burden. Recently, some lightweight MLP-based methods have been successfully applied to multimodal sentiment classification tasks. In this paper, we propose an effective rearrangement and restore mixer model (RR-Mixer) for target-oriented multimodal sentiment classification (TMSC), which dedicates the interaction of image, text, and targets along the modal-axis , sequential-axis , and feature channel-axis through rearrangement and restore operations. Specifically, we take Vision Transformer (ViT) and Robustly optimized BERT (RoBERTa) pre-trained models to extract image and textual features respectively. Further, we adopt cosine similarity to select the most semantically relevant image features. Then, an RR-Mixer Module is designed for mixed multimodal features, with the core technology consisting of rolling, grouping rearrangement and restore operations. Moreover, we introduce MLP Unit to learn the information of different modalities for inter-modal interaction. The results show that our model achieves superior performance on two benchmark multimodal datasets, TWITTER-15 and TWITTER-17, with a significant improvement of 4.66%, 1.26% in terms of macro-F1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bc应助guozizi采纳,获得20
刚刚
bc应助guozizi采纳,获得20
刚刚
arisfield完成签到,获得积分10
刚刚
嘻嘻哈哈完成签到,获得积分10
1秒前
悄悄发布了新的文献求助10
1秒前
2秒前
FSF发布了新的文献求助10
3秒前
access完成签到,获得积分10
3秒前
3秒前
YY发布了新的文献求助30
3秒前
曾无忧发布了新的文献求助10
3秒前
小马甲应助Cici采纳,获得10
4秒前
4秒前
4秒前
T_发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
LLLnna完成签到,获得积分10
4秒前
科研通AI5应助lizhiqian2024采纳,获得30
4秒前
4秒前
4秒前
哈哈哈哈哈完成签到,获得积分20
5秒前
yy完成签到 ,获得积分10
6秒前
明月照我程完成签到,获得积分10
6秒前
唐尔曼发布了新的文献求助10
7秒前
qq完成签到 ,获得积分10
7秒前
W_King完成签到,获得积分10
7秒前
Holland完成签到,获得积分10
7秒前
ZN发布了新的文献求助10
7秒前
zx完成签到 ,获得积分10
7秒前
文静元风完成签到,获得积分10
7秒前
害羞大碗完成签到,获得积分10
8秒前
8秒前
8秒前
久久发布了新的文献求助10
9秒前
9秒前
等待惜文发布了新的文献求助10
9秒前
时来运转完成签到 ,获得积分10
9秒前
珈蓝发布了新的文献求助10
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808655
求助须知:如何正确求助?哪些是违规求助? 3353413
关于积分的说明 10365062
捐赠科研通 3069602
什么是DOI,文献DOI怎么找? 1685698
邀请新用户注册赠送积分活动 810656
科研通“疑难数据库(出版商)”最低求助积分说明 766240