How does worker mobility affect business adoption of a new technology? The case of machine learning

情感(语言学) 早期采用者 激励 业务 分析 代理(统计) 产业组织 技术变革 劳动经济学 营销 人口经济学 经济 计算机科学 微观经济学 语言学 机器学习 哲学 宏观经济学 数据科学
作者
Ruyu Chen,Natarajan Balasubramanian,Chris Forman
出处
期刊:Strategic Management Journal [Wiley]
卷期号:45 (8): 1510-1538 被引量:5
标识
DOI:10.1002/smj.3595
摘要

Abstract Research Summary We investigate how worker mobility influences the adoption of a new technology using state‐level changes to the enforceability of noncompete agreements as an exogenous shock to worker mobility. Using data on over 153,000 establishments from 2010 and 2018, we find that changes that facilitate worker movements are associated with a significant decline in the likelihood of adoption of machine learning. Moreover, we find that the magnitude of decline depends upon the size of the establishment, the extent of predictive analytics adoption in its industry, and the number of large establishments in the same industry‐location. These results are consistent with the view that increases in outward worker mobility increase costs for adoption of a new technology that involves significant downstream investments in the early years of its diffusion. Managerial Summary Successful business adoption of new technologies such as machine learning requires skilled workers with experience in implementing those technologies. In the early years of technology diffusion workers in early adopting businesses typically acquire these skills through on‐the‐job learning that is paid for by the adopter. So, if such early adopters face an increased risk of those skilled workers quitting, then their incentives to adopt the technology decrease. We examine this possibility using changes in noncompete enforceability as a proxy for changes in worker mobility and find that the likelihood of adopting machine learning decreases as the risk of worker mobility increases, particularly for larger establishments, establishments in industries where adoption may be more beneficial and in locations with many large competing establishments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
刚刚
汉堡包应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
斯坦933应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
共享精神应助李嘉鑫采纳,获得10
2秒前
2秒前
Ava应助发一篇Nature采纳,获得10
3秒前
4秒前
哈哈哈发布了新的文献求助10
4秒前
5秒前
6秒前
科研通AI5应助彩色的电脑采纳,获得10
6秒前
6秒前
人文地理cg完成签到,获得积分10
6秒前
Alex应助天下无贼采纳,获得20
7秒前
李佳欣发布了新的文献求助10
7秒前
蚂蚁一号完成签到 ,获得积分10
9秒前
JazzWon发布了新的文献求助10
9秒前
慕容飞凤完成签到,获得积分0
9秒前
10秒前
10秒前
666发布了新的文献求助10
11秒前
SciGPT应助FPPL采纳,获得20
11秒前
江月发布了新的文献求助10
11秒前
12秒前
12秒前
111发布了新的文献求助10
14秒前
blue完成签到,获得积分10
15秒前
16秒前
俊逸的凝珍完成签到,获得积分10
16秒前
高分求助中
How Maoism Was Made: Reconstructing China, 1949-1965 1200
Quantum reference frames : from quantum information to spacetime 888
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4388344
求助须知:如何正确求助?哪些是违规求助? 3879973
关于积分的说明 12084955
捐赠科研通 3523737
什么是DOI,文献DOI怎么找? 1933733
邀请新用户注册赠送积分活动 974574
科研通“疑难数据库(出版商)”最低求助积分说明 872695