已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

How does worker mobility affect business adoption of a new technology? The case of machine learning

情感(语言学) 早期采用者 激励 业务 分析 代理(统计) 产业组织 技术变革 劳动经济学 营销 人口经济学 经济 计算机科学 微观经济学 语言学 哲学 数据科学 机器学习 宏观经济学
作者
Ruyu Chen,Natarajan Balasubramanian,Chris Forman
出处
期刊:Strategic Management Journal [Wiley]
卷期号:45 (8): 1510-1538 被引量:5
标识
DOI:10.1002/smj.3595
摘要

Abstract Research Summary We investigate how worker mobility influences the adoption of a new technology using state‐level changes to the enforceability of noncompete agreements as an exogenous shock to worker mobility. Using data on over 153,000 establishments from 2010 and 2018, we find that changes that facilitate worker movements are associated with a significant decline in the likelihood of adoption of machine learning. Moreover, we find that the magnitude of decline depends upon the size of the establishment, the extent of predictive analytics adoption in its industry, and the number of large establishments in the same industry‐location. These results are consistent with the view that increases in outward worker mobility increase costs for adoption of a new technology that involves significant downstream investments in the early years of its diffusion. Managerial Summary Successful business adoption of new technologies such as machine learning requires skilled workers with experience in implementing those technologies. In the early years of technology diffusion workers in early adopting businesses typically acquire these skills through on‐the‐job learning that is paid for by the adopter. So, if such early adopters face an increased risk of those skilled workers quitting, then their incentives to adopt the technology decrease. We examine this possibility using changes in noncompete enforceability as a proxy for changes in worker mobility and find that the likelihood of adopting machine learning decreases as the risk of worker mobility increases, particularly for larger establishments, establishments in industries where adoption may be more beneficial and in locations with many large competing establishments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XLC发布了新的文献求助30
刚刚
吕佩完成签到,获得积分10
刚刚
小二郎应助yzr01采纳,获得10
1秒前
蛋蛋完成签到,获得积分10
2秒前
绿绿绿绿发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
结实碧空发布了新的文献求助10
7秒前
汉堡包应助XLC采纳,获得10
7秒前
代娇发布了新的文献求助10
8秒前
yzr01发布了新的文献求助10
10秒前
zhuzhu完成签到 ,获得积分10
10秒前
在水一方应助懒得可爱采纳,获得10
11秒前
11秒前
13秒前
Owen应助JG采纳,获得10
14秒前
风清扬发布了新的文献求助10
16秒前
复杂真发布了新的文献求助10
17秒前
叶千山完成签到,获得积分10
17秒前
琳666发布了新的文献求助60
17秒前
ac发布了新的文献求助150
18秒前
19秒前
venom应助wwh采纳,获得20
20秒前
21秒前
dum发布了新的文献求助10
22秒前
24秒前
吉吉发布了新的文献求助10
24秒前
不知道叫什么完成签到 ,获得积分10
28秒前
28秒前
123发布了新的文献求助10
31秒前
麦芽发布了新的文献求助10
31秒前
32秒前
科研通AI5应助滕擎采纳,获得10
34秒前
郭耀锐完成签到,获得积分10
35秒前
35秒前
小油菜完成签到 ,获得积分10
35秒前
绿绿绿绿完成签到,获得积分10
36秒前
qiubai完成签到 ,获得积分10
36秒前
张小闲完成签到 ,获得积分10
37秒前
CodeCraft应助ardejiang采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090007
求助须知:如何正确求助?哪些是违规求助? 4304665
关于积分的说明 13414601
捐赠科研通 4130315
什么是DOI,文献DOI怎么找? 2262199
邀请新用户注册赠送积分活动 1266136
关于科研通互助平台的介绍 1200822