How does worker mobility affect business adoption of a new technology? The case of machine learning

情感(语言学) 早期采用者 激励 业务 分析 代理(统计) 产业组织 技术变革 劳动经济学 营销 人口经济学 经济 计算机科学 微观经济学 语言学 机器学习 哲学 宏观经济学 数据科学
作者
Ruyu Chen,Natarajan Balasubramanian,Chris Forman
出处
期刊:Strategic Management Journal [Wiley]
卷期号:45 (8): 1510-1538 被引量:5
标识
DOI:10.1002/smj.3595
摘要

Abstract Research Summary We investigate how worker mobility influences the adoption of a new technology using state‐level changes to the enforceability of noncompete agreements as an exogenous shock to worker mobility. Using data on over 153,000 establishments from 2010 and 2018, we find that changes that facilitate worker movements are associated with a significant decline in the likelihood of adoption of machine learning. Moreover, we find that the magnitude of decline depends upon the size of the establishment, the extent of predictive analytics adoption in its industry, and the number of large establishments in the same industry‐location. These results are consistent with the view that increases in outward worker mobility increase costs for adoption of a new technology that involves significant downstream investments in the early years of its diffusion. Managerial Summary Successful business adoption of new technologies such as machine learning requires skilled workers with experience in implementing those technologies. In the early years of technology diffusion workers in early adopting businesses typically acquire these skills through on‐the‐job learning that is paid for by the adopter. So, if such early adopters face an increased risk of those skilled workers quitting, then their incentives to adopt the technology decrease. We examine this possibility using changes in noncompete enforceability as a proxy for changes in worker mobility and find that the likelihood of adopting machine learning decreases as the risk of worker mobility increases, particularly for larger establishments, establishments in industries where adoption may be more beneficial and in locations with many large competing establishments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11关注了科研通微信公众号
1秒前
drsquall完成签到,获得积分10
2秒前
顾子墨完成签到,获得积分10
2秒前
msk完成签到 ,获得积分10
2秒前
4秒前
无私的薯片完成签到,获得积分20
6秒前
蒋若风发布了新的文献求助10
7秒前
bkagyin应助繁荣的又夏采纳,获得10
8秒前
zkkz完成签到,获得积分10
9秒前
蛙鼠兔完成签到,获得积分10
11秒前
Wanyeweiyu完成签到,获得积分10
13秒前
楚文强完成签到,获得积分10
13秒前
14秒前
16秒前
繁荣的又夏完成签到,获得积分10
19秒前
Akim应助谁家那小谁采纳,获得10
21秒前
21秒前
一路硕博完成签到,获得积分10
22秒前
张静枝完成签到 ,获得积分10
23秒前
皮皮完成签到 ,获得积分10
25秒前
26秒前
next完成签到,获得积分10
26秒前
朴素海亦完成签到 ,获得积分10
28秒前
上官若男应助科研通管家采纳,获得10
28秒前
wanci应助科研通管家采纳,获得10
28秒前
赘婿应助科研通管家采纳,获得10
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
852应助科研通管家采纳,获得10
29秒前
小马甲应助科研通管家采纳,获得10
29秒前
FashionBoy应助科研通管家采纳,获得20
29秒前
29秒前
29秒前
不辞完成签到,获得积分10
31秒前
31秒前
黎契发布了新的文献求助10
32秒前
寄草完成签到,获得积分10
32秒前
34秒前
39秒前
12完成签到 ,获得积分10
39秒前
clcl完成签到,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777773
求助须知:如何正确求助?哪些是违规求助? 3323295
关于积分的说明 10213571
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275