Construction of a depression risk prediction model for type 2 diabetes mellitus patients based on NHANES 2007–2014

列线图 医学 逻辑回归 2型糖尿病 萧条(经济学) 内科学 糖尿病 内分泌学 经济 宏观经济学
作者
Xinping Yu,Sheng Tian,Lanxiang Wu,Heqing Zheng,Mingxu Liu,Wei Wu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:349: 217-225 被引量:21
标识
DOI:10.1016/j.jad.2024.01.083
摘要

Type 2 diabetes mellitus (T2DM) is a prevalent global health issue that has been linked to an increased risk of depression. The objective of this study was to construct a nomogram model for predicting depression in T2DM patients. A total of 4280 patients with T2DM were included in this study from the 2007–2014 NHANES. The entire dataset was split randomly into training set comprising 70 % of the data and a validation set comprising 30 % of the data. LASSO and multivariate logistic regression analyses identified predictors significantly associated with depression, and the nomogram was constructed with these predictors. The model was assessed by C-index, calibration curve, the hosmer–lemeshow test and decision curve analysis (DCA). The nomogram model comprised of 9 predictors, namely age, gender, PIR, BMI, education attainment, smoking status, LDL-C, sleep duration and sleep disorder. The C-index of the training set was 0.780, while that of the validation set was 0.752, indicating favorable discrimination for the model. The model exhibited excellent clinical applicability and calibration in both the training and validation datasets. Moreover, the cut-off value of the nomogram is 223. This study has shortcomings in data collection, lack of external validation, and results non-extrapolation. Our nomogram exhibits high clinical predictability, enabling clinicians to utilize this tool in identifying high-risk depressed patients with T2DM. It has the potential to decrease the incidence of depression and significantly improve the prognosis of patients with T2DM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖大海完成签到,获得积分10
1秒前
知北游应助疯狂的寻绿采纳,获得10
2秒前
科研通AI6应助Catherine_Song采纳,获得10
2秒前
起个名不麻烦完成签到 ,获得积分10
2秒前
bing完成签到,获得积分10
3秒前
3秒前
highlight发布了新的文献求助10
3秒前
胖大海发布了新的文献求助10
5秒前
Zero完成签到,获得积分10
5秒前
心心子完成签到 ,获得积分10
7秒前
7秒前
圣尊鳕幽完成签到,获得积分10
7秒前
顾矜应助刘涵采纳,获得10
10秒前
羊脚印发布了新的文献求助10
13秒前
科研通AI2S应助欢喜的不尤采纳,获得10
13秒前
浮游应助笑ige采纳,获得10
14秒前
eiland发布了新的文献求助10
16秒前
Owen应助耍酷延恶采纳,获得10
16秒前
跳跳虎完成签到 ,获得积分10
16秒前
18秒前
Juvianne完成签到 ,获得积分10
21秒前
21秒前
shi hui发布了新的文献求助10
21秒前
23秒前
24秒前
25秒前
刘涵发布了新的文献求助10
26秒前
aishangkeyan发布了新的文献求助10
26秒前
羊脚印完成签到,获得积分10
27秒前
默然的歌完成签到 ,获得积分10
27秒前
28秒前
耍酷延恶发布了新的文献求助10
28秒前
30秒前
墨染完成签到 ,获得积分10
31秒前
大聪明应助赛亚人采纳,获得10
31秒前
34秒前
封闭货车发布了新的文献求助50
35秒前
七七完成签到,获得积分10
36秒前
刘涵完成签到 ,获得积分10
36秒前
喏晨发布了新的文献求助10
38秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381160
求助须知:如何正确求助?哪些是违规求助? 4504646
关于积分的说明 14018876
捐赠科研通 4413797
什么是DOI,文献DOI怎么找? 2424443
邀请新用户注册赠送积分活动 1417437
关于科研通互助平台的介绍 1395174