Construction of a depression risk prediction model for type 2 diabetes mellitus patients based on NHANES 2007–2014

列线图 医学 逻辑回归 2型糖尿病 萧条(经济学) 内科学 糖尿病 内分泌学 经济 宏观经济学
作者
Xinping Yu,Sheng Tian,Lanxiang Wu,Heqing Zheng,Mingxu Liu,Wei Wu
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:349: 217-225 被引量:11
标识
DOI:10.1016/j.jad.2024.01.083
摘要

Type 2 diabetes mellitus (T2DM) is a prevalent global health issue that has been linked to an increased risk of depression. The objective of this study was to construct a nomogram model for predicting depression in T2DM patients. A total of 4280 patients with T2DM were included in this study from the 2007–2014 NHANES. The entire dataset was split randomly into training set comprising 70 % of the data and a validation set comprising 30 % of the data. LASSO and multivariate logistic regression analyses identified predictors significantly associated with depression, and the nomogram was constructed with these predictors. The model was assessed by C-index, calibration curve, the hosmer–lemeshow test and decision curve analysis (DCA). The nomogram model comprised of 9 predictors, namely age, gender, PIR, BMI, education attainment, smoking status, LDL-C, sleep duration and sleep disorder. The C-index of the training set was 0.780, while that of the validation set was 0.752, indicating favorable discrimination for the model. The model exhibited excellent clinical applicability and calibration in both the training and validation datasets. Moreover, the cut-off value of the nomogram is 223. This study has shortcomings in data collection, lack of external validation, and results non-extrapolation. Our nomogram exhibits high clinical predictability, enabling clinicians to utilize this tool in identifying high-risk depressed patients with T2DM. It has the potential to decrease the incidence of depression and significantly improve the prognosis of patients with T2DM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助德坚采纳,获得10
1秒前
在水一方应助曲奇采纳,获得10
2秒前
GongSyi发布了新的文献求助10
2秒前
小元发布了新的文献求助10
2秒前
萤火虫发布了新的文献求助10
3秒前
虚心谷梦完成签到,获得积分10
4秒前
4秒前
HEAUBOOK应助时丶倾采纳,获得30
4秒前
相逢驳回了bc应助
10秒前
畅快枕头完成签到 ,获得积分10
10秒前
小胡发布了新的文献求助10
11秒前
jialin发布了新的文献求助10
12秒前
tsntn完成签到,获得积分10
14秒前
15秒前
111发布了新的文献求助10
20秒前
25秒前
领导范儿应助liang采纳,获得10
26秒前
里里要努力完成签到,获得积分10
30秒前
科研通AI5应助可爱的寻云采纳,获得10
31秒前
lily336699发布了新的文献求助10
31秒前
星辰大海应助尺八采纳,获得30
31秒前
科研通AI5应助扒开皮皮采纳,获得10
31秒前
32秒前
斯文败类应助负责的方盒采纳,获得10
33秒前
35秒前
小胡完成签到,获得积分20
35秒前
noss发布了新的文献求助10
39秒前
42秒前
liang发布了新的文献求助10
45秒前
懒懒洋洋洋完成签到 ,获得积分10
47秒前
科研通AI5应助安白采纳,获得10
47秒前
48秒前
51秒前
天天快乐应助liang采纳,获得10
54秒前
科研通AI5应助lily336699采纳,获得10
55秒前
风趣尔蓝发布了新的文献求助30
55秒前
57秒前
58秒前
Hello应助WN采纳,获得10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323655
关于积分的说明 10215320
捐赠科研通 3038839
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339