已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Investigating the network structure and causal relationships among bridge symptoms of comorbid depression and anxiety: A Bayesian network analysis

心理学 焦虑 萧条(经济学) 易怒 临床心理学 背景(考古学) 共病 心情 愤怒 精神科 生物 古生物学 经济 宏观经济学
作者
Yu Wang,Zhongquan Li,Xing Cao
出处
期刊:Journal of Clinical Psychology [Wiley]
卷期号:80 (6): 1271-1285 被引量:8
标识
DOI:10.1002/jclp.23663
摘要

Abstract Background The network analysis method emphasizes the interaction between individual symptoms to identify shared or bridging symptoms between depression and anxiety to understand comorbidity. However, the network analysis and community detection approach have limitations in identifying causal relationships among symptoms. This study aims to address this gap by applying Bayesian network (BN) analysis to investigate potential causal relationships. Method Data were collected from a sample of newly enrolled college students. The network structure of depression and anxiety was estimated using the Patient Health Questionnaire‐9 (PHQ‐9) and the Generalized Anxiety Disorder (GAD‐7) Scale measures, respectively. Shared symptoms between depression and anxiety were identified through network analysis and clique percolation (CP) method. The causal relationships among symptoms were estimated using BN. Results The strongest bridge symptoms, as indicated by bridge strength, include sad mood (PHQ2), motor (PHQ8), suicide (PHQ9), restlessness (GAD5), and irritability (GAD6). These bridge symptoms formed a distinct community using the CP algorithm. Sad mood (PHQ2) played an activating role, influencing other symptoms. Meanwhile, restlessness (GAD5) played a mediating role with reciprocal influences on both anxiety and depression symptoms. Motor (PHQ8), suicide (PHQ9), and irritability (GAD6) assumed recipient positions. Conclusion BN analysis presents a valuable approach for investigating the complex interplay between symptoms in the context of comorbid depression and anxiety. It identifies two activating symptoms (i.e., sadness and worry), which serve to underscore the fundamental differences between these two disorders. Additionally, psychomotor symptoms and suicidal ideations are recognized as recipient roles, being influenced by other symptoms within the network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
图图完成签到,获得积分10
刚刚
小马甲应助Hongni采纳,获得10
1秒前
感动白开水完成签到,获得积分10
1秒前
sijia_yang发布了新的文献求助10
2秒前
mashichuang发布了新的文献求助10
4秒前
5秒前
郝富完成签到,获得积分10
6秒前
Winter发布了新的文献求助10
10秒前
bean完成签到 ,获得积分10
11秒前
亚当完成签到 ,获得积分10
11秒前
kk完成签到 ,获得积分10
13秒前
小学生库里完成签到,获得积分10
14秒前
bkagyin应助请加我XP采纳,获得10
15秒前
午餐肉完成签到,获得积分10
18秒前
peninsula完成签到,获得积分20
19秒前
24秒前
852应助当年明月采纳,获得10
25秒前
旺大财完成签到 ,获得积分10
27秒前
花开富贵发布了新的文献求助10
27秒前
脑洞疼应助科研通管家采纳,获得10
28秒前
spark应助科研通管家采纳,获得10
28秒前
Owen应助科研通管家采纳,获得10
28秒前
xxx完成签到 ,获得积分10
28秒前
28秒前
赘婿应助科研通管家采纳,获得10
28秒前
28秒前
pcr163应助科研通管家采纳,获得200
28秒前
samvega应助科研通管家采纳,获得30
29秒前
29秒前
zho应助pike采纳,获得10
31秒前
33秒前
fffddf发布了新的文献求助10
33秒前
33完成签到 ,获得积分10
34秒前
34秒前
Hosea发布了新的文献求助10
35秒前
ppppppp_76完成签到 ,获得积分10
35秒前
Tacamily完成签到,获得积分10
38秒前
科研通AI5应助顺心凝天采纳,获得10
38秒前
当年明月发布了新的文献求助10
38秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815663
求助须知:如何正确求助?哪些是违规求助? 3359277
关于积分的说明 10401515
捐赠科研通 3076999
什么是DOI,文献DOI怎么找? 1690059
邀请新用户注册赠送积分活动 813650
科研通“疑难数据库(出版商)”最低求助积分说明 767694