An Ultralightweight Hybrid CNN Based on Redundancy Removal for Hyperspectral Image Classification

冗余(工程) 计算机科学 高光谱成像 卷积(计算机科学) 卷积神经网络 人工智能 特征提取 上下文图像分类 模式识别(心理学) 核(代数) 人工神经网络 图像(数学) 数学 组合数学 操作系统
作者
Xiaohu Ma,Wuli Wang,Wei Li,Jianbu Wang,Guangbo Ren,Peng Ren,Baodi Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:19
标识
DOI:10.1109/tgrs.2024.3356524
摘要

Convolutional neural network (CNN)-based hyperspectral image (HSI) classification models often exhibit high volume and complexity. This not only poses challenges in deploying them on mobile and embedded devices due to storage and power constraints but also introduces a dilemma between the growing demand for labeled samples and the high cost associated with manual labeling. To address these challenges, we propose an ultra-lightweight hybrid CNN based on redundancy removal (ULite-R2HCN), specifically designed for HSI classification in scenarios with limited samples. To reduce computational costs and enhance feature extraction effectiveness, we focus on optimizing the widely used depthwise convolution (DW-Conv) and pointwise convolution (PW-Conv) in the lightweight HSI classification model. For DW-Conv, we design a spatial convolution with redundancy removal (R2Spatial-Conv). This involves the design of multi-scale 3D convolution kernels with specific structures instead of 2D convolution kernels, aiming to reduce redundant convolution kernels and extract multi-scale spatial features. Simultaneously, for PW-Conv, we design a spectral convolution with redundancy removal (R2Spectral-Conv). This utilizes a "copy-splicing-grouping" structure to extract spectral features within arbitrary range intervals, effectively reducing redundant spectral extractions and capturing long-range spectral relationships. Numerous experiments have shown that the proposed ULite-R2HCN achieves higher classification accuracy with an ultra-light volume for a few training samples. In addition, sufficient ablation experiments also verified the advanced performance of the designed R2Spatial-Conv and R2Spectral-Conv.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SY完成签到,获得积分20
1秒前
1秒前
青山发布了新的文献求助10
1秒前
Verity发布了新的文献求助30
1秒前
小马甲应助柚子采纳,获得10
2秒前
慕青应助cc采纳,获得10
2秒前
2秒前
善学以致用应助仁爱雪晴采纳,获得10
2秒前
3秒前
陈文文发布了新的文献求助10
3秒前
3秒前
学术废物发布了新的文献求助10
4秒前
4秒前
刘午霞完成签到,获得积分10
4秒前
4秒前
6秒前
6秒前
华仔应助kiki采纳,获得10
7秒前
Orange应助禾羊采纳,获得10
7秒前
南笙完成签到,获得积分10
7秒前
7秒前
爆米花应助午盏采纳,获得10
7秒前
down发布了新的文献求助10
7秒前
呱呱完成签到 ,获得积分10
7秒前
干净寻冬应助威武从霜采纳,获得10
8秒前
8秒前
JL发布了新的文献求助10
8秒前
柚子完成签到,获得积分10
9秒前
9秒前
大模型应助西又木采纳,获得30
9秒前
9秒前
10秒前
舒适新梅发布了新的文献求助10
10秒前
超级裁缝完成签到,获得积分10
10秒前
10秒前
11秒前
wanli445完成签到,获得积分10
11秒前
11秒前
11秒前
木木发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642354
求助须知:如何正确求助?哪些是违规求助? 4758746
关于积分的说明 15017371
捐赠科研通 4801005
什么是DOI,文献DOI怎么找? 2566290
邀请新用户注册赠送积分活动 1524440
关于科研通互助平台的介绍 1483953