Multimodal radiomics-based methods using deep learning for prediction of brain metastasis in non-small cell lung cancer with 18F-FDG PET/CT images

无线电技术 肺癌 接收机工作特性 医学 脑转移 转移 放射科 癌症 肿瘤科 内科学
作者
Yuan Zhu,Shan Cong,Qiyang Zhang,Zhenxing Huang,Xiaohui Yao,You Cheng,Dong Liang,Zhanli Hu,Dan Shao
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (6): 065011-065011 被引量:1
标识
DOI:10.1088/2057-1976/ad7595
摘要

Abstract Objective . Approximately 57% of non-small cell lung cancer (NSCLC) patients face a 20% risk of brain metastases (BMs). The delivery of drugs to the central nervous system is challenging because of the blood–brain barrier, leading to a relatively poor prognosis for patients with BMs. Therefore, early detection and treatment of BMs are highly important for improving patient prognosis. This study aimed to investigate the feasibility of a multimodal radiomics-based method using 3D neural networks trained on 18 F-FDG PET/CT images to predict BMs in NSCLC patients. Approach . We included 226 NSCLC patients who underwent 18 F-FDG PET/CT scans of areas, including the lung and brain, prior to EGFR-TKI therapy. Moreover, clinical data (age, sex, stage, etc) were collected and analyzed. Shallow lung features and deep lung-brain features were extracted using PyRadiomics and 3D neural networks, respectively. A support vector machine (SVM) was used to predict BMs. The receiver operating characteristic (ROC) curve and F1 score were used to assess BM prediction performance. Main result . The combination of shallow lung and shallow-deep lung-brain features demonstrated superior predictive performance (AUC = 0.96 ± 0.01). Shallow-deep lung-brain features exhibited strong significance (P < 0.001) and potential predictive performance (coefficient > 0.8). Moreover, BM prediction by age was significant (P < 0.05). Significance . Our approach enables the quantitative assessment of medical images and a deeper understanding of both superficial and deep tumor characteristics. This noninvasive method has the potential to identify BM-related features with statistical significance, thereby aiding in the development of targeted treatment plans for NSCLC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助yy采纳,获得10
1秒前
Akim应助亓雅丽采纳,获得10
1秒前
王W发布了新的文献求助10
1秒前
adi完成签到,获得积分10
2秒前
蜉蝣发布了新的文献求助10
2秒前
诚心的忆灵完成签到,获得积分10
3秒前
科研通AI6应助哈哈哈采纳,获得10
3秒前
梦里看花落完成签到 ,获得积分10
4秒前
董1发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
汉堡包应助hkxfg采纳,获得80
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
xiamqw完成签到,获得积分10
6秒前
研友_nv2r4n完成签到,获得积分20
6秒前
房山芙完成签到,获得积分10
8秒前
8秒前
领导范儿应助炙热果汁采纳,获得10
9秒前
9秒前
搞笑煎蛋发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
谨慎又夏完成签到,获得积分10
12秒前
吴吴温欣完成签到 ,获得积分10
13秒前
月Yue关注了科研通微信公众号
13秒前
13秒前
郭政飞发布了新的文献求助10
13秒前
13秒前
木南发布了新的文献求助10
14秒前
wwl01034发布了新的文献求助10
14秒前
赘婿应助宝玉采纳,获得10
14秒前
15秒前
15秒前
16秒前
17秒前
大个应助蜉蝣采纳,获得10
17秒前
李健的粉丝团团长应助Niki采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720067
求助须知:如何正确求助?哪些是违规求助? 5258729
关于积分的说明 15290203
捐赠科研通 4869657
什么是DOI,文献DOI怎么找? 2614906
邀请新用户注册赠送积分活动 1564885
关于科研通互助平台的介绍 1522079