Early prediction of sepsis in emergency department patients using various methods and scoring systems

急诊科 败血症 医学 急诊医学 医疗急救 内科学 护理部
作者
Yuegang Song,Hao‐Neng Huang,Jiajun Ma,Rui Xing,Young-Gi Song,Li Li,Jin Zhou,Chun‐Quan Ou
出处
期刊:Nursing in critical care [Wiley]
卷期号:30 (3): e13201-e13201 被引量:4
标识
DOI:10.1111/nicc.13201
摘要

Abstract Background Early recognition of sepsis, a common life‐threatening condition in intensive care units (ICUs), is beneficial for improving patient outcomes. However, most sepsis prediction models were trained and assessed in the ICU, which might not apply to emergency department (ED) settings. Aim To establish an early predictive model based on basic but essential information collected upon ED presentation for the follow‐up diagnosis of sepsis observed in the ICU. Study Design This study developed and validated a reliable model of sepsis prediction among ED patients by comparing 10 different methods based on retrospective electronic health record data from the MIMIC‐IV database. In‐ICU sepsis was identified as the primary outcome. The potential predictors encompassed baseline demographics, vital signs, pain scale, chief complaints and Emergency Severity Index (ESI). 80% and 20% of the total of 425 737 ED visit records were randomly selected for the train set and the test set for model development and validation, respectively. Results Among the methods evaluated, XGBoost demonstrated an optimal predictive performance with an area under the curve (AUC) of 0.90 (95% CI: 0.90–0.91). Logistic regression exhibited a comparable predictive ability to XGBoost, with an AUC of 0.89 (95% CI: 0.89–0.90), along with a sensitivity and specificity of 85% (95% CI: 0.83–0.86) and 78% (95% CI: 0.77–0.80), respectively. Neither of the five commonly used severity scoring systems demonstrated satisfactory performance for sepsis prediction. The predictive ability of using ESI as the sole predictor (AUC: 0.79, 95% CI: 0.78–0.80) was also inferior to the model integrating ESI and other basic information. Conclusions The use of ESI combined with basic clinical information upon ED presentation accurately predicted sepsis among ED patients, strengthening its application in ED. Relevance to Clinical Practice The proposed model may assist nurses in risk stratification management and prioritize interventions for potential sepsis patients, even in low‐resource settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EnjieLin完成签到,获得积分10
6秒前
keke完成签到 ,获得积分10
7秒前
香蕉书兰完成签到,获得积分20
8秒前
hope完成签到,获得积分10
9秒前
wei_ahpu完成签到,获得积分10
9秒前
10秒前
ssy完成签到 ,获得积分10
10秒前
Eden发布了新的文献求助10
11秒前
奥斯卡完成签到,获得积分0
17秒前
充电宝应助123采纳,获得10
26秒前
锅巴完成签到 ,获得积分10
28秒前
stone完成签到,获得积分10
32秒前
科研人员完成签到 ,获得积分20
34秒前
Ping完成签到,获得积分10
36秒前
Eden完成签到,获得积分20
38秒前
哎哟哎哟完成签到,获得积分10
40秒前
壮观人达发布了新的文献求助10
51秒前
舒心的雍应助ixueyi采纳,获得10
51秒前
oi完成签到 ,获得积分10
57秒前
58秒前
reece完成签到 ,获得积分10
59秒前
nini发布了新的文献求助10
1分钟前
ixueyi完成签到,获得积分10
1分钟前
时尚的诗珊完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
charint应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
蓝天应助科研通管家采纳,获得10
1分钟前
SPARK应助科研通管家采纳,获得10
1分钟前
charint应助科研通管家采纳,获得10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851979
求助须知:如何正确求助?哪些是违规求助? 6275055
关于积分的说明 15627539
捐赠科研通 4967924
什么是DOI,文献DOI怎么找? 2678842
邀请新用户注册赠送积分活动 1623057
关于科研通互助平台的介绍 1579488