Interface chemistry, band alignment, and thermal stability study of Sn metal contact on bulk and monolayer MoS2

单层 材料科学 退火(玻璃) 工作职能 接触电阻 X射线光电子能谱 范德瓦尔斯力 过渡金属 纳米技术 费米能级 光电发射光谱学 化学物理 化学工程 化学 图层(电子) 催化作用 冶金 分子 工程类 电子 有机化学 量子力学 物理 生物化学
作者
J. Roy,Seong Yeoul Kim,Robert M. Wallace
出处
期刊:Journal of vacuum science and technology [American Vacuum Society]
卷期号:42 (5)
标识
DOI:10.1116/6.0003845
摘要

Two-dimensional semiconductors such as transition metal dichalcogenides (TMDs) are making impressive strides in a short duration compared to other candidates. However, to unlock their full potential for advanced logic transistors, attention must be given to improving the contacts or interfaces they form. One approach is to interface with a suitable low work function metal contact to allow the surface Fermi level (EF) movement toward intended directions, thereby augmenting the overall electrical performance. In this work, we implement physical characterization to understand the tin (Sn) contact interface on monolayer and bulk molybdenum disulfide (MoS2) via in situ x-ray photoelectron spectroscopy and ex situ atomic force microscopy. A Sn contact exhibited a van der Waals type weak interaction with the MoS2 bulk surface where no reaction between Sn and MoS2 is detected. In contrast, reaction products with Sn—S bonding are detected with a monolayer surface consistent with a covalentlike interface. Band alignment at the interface indicates that Sn deposition induces n-type properties in the bulk substrate, while EF of the monolayer remains pinned. In addition, the thermal stability of Sn on the same substrates is investigated in a sequential ultrahigh vacuum annealing treatment at 100, 200, 300, and 400 °C. Sn sublimated/desorbed from both substrates with increasing temperature, which is more prominent on the bulk substrate after annealing at 400 °C. Additionally, Sn significantly reduced the monolayer substrate and produced detectable interface reaction products at higher annealing temperatures. The findings can be strategized to resolve challenges with contact resistance that the device community is having with TMDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助闪闪的静槐采纳,获得10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
雪白山蝶完成签到,获得积分10
2秒前
香蕉觅云应助阳光大男孩采纳,获得10
2秒前
cyt发布了新的文献求助10
3秒前
天天快乐应助爱吃马铃薯采纳,获得10
4秒前
宁夏完成签到,获得积分10
4秒前
隐形曼青应助佳乐采纳,获得10
4秒前
4秒前
安详的惜梦完成签到 ,获得积分10
5秒前
一切都好发布了新的文献求助10
6秒前
6秒前
小吕发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
9秒前
李李完成签到,获得积分10
9秒前
11秒前
wanci应助yanyan采纳,获得30
11秒前
11秒前
12秒前
12秒前
李李发布了新的文献求助10
12秒前
12秒前
彭于晏应助东拉河采纳,获得10
13秒前
13秒前
科研通AI2S应助LI采纳,获得10
13秒前
蜘蛛侠完成签到,获得积分10
13秒前
joico007完成签到,获得积分10
14秒前
英俊的铭应助WANGCHU采纳,获得10
14秒前
15秒前
阿杜阿杜发布了新的文献求助10
15秒前
16秒前
gugujk应助zyy采纳,获得10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662471
求助须知:如何正确求助?哪些是违规求助? 4843166
关于积分的说明 15100157
捐赠科研通 4820958
什么是DOI,文献DOI怎么找? 2580447
邀请新用户注册赠送积分活动 1534491
关于科研通互助平台的介绍 1493039