Integration of Deep Learning‐Based Inversion and Upscaled Mass‐Transfer Model for DNAPL Mass‐Discharge Estimation and Uncertainty Assessment

计算机科学 克里金 贝叶斯推理 算法 贝叶斯概率 机器学习 人工智能
作者
Xueyuan Kang,A. Kokkinaki,Xiaoqing Shi,Hongkyu Yoon,Jonghyun Lee,Peter K. Kitanidis,Jichun Wu
出处
期刊:Water Resources Research [Wiley]
卷期号:58 (10)
标识
DOI:10.1029/2022wr033277
摘要

The challenges posed by high-resolution characterization of dense nonaqueous phase liquid (DNAPL) source zone architecture (SZA) have motivated the development of simpler upscaled models that rely on domain-averaged metrics to capture the average mass discharge downstream of source zones (SZ). However, SZA is highly irregular, making estimation of these domain-averaged metrics from sparse borehole data extremely difficult. Poor estimation of SZ metrics means that upscaled models cannot reproduce the multistage effluent concentrations. Bayesian inversion methods can be used to obtain accurate estimates of SZ metrics and their uncertainties from sparse data, and from there, upscaled models can better reproduce multistage effluent concentrations. This work presents a framework for integrating a deep-learning-based 3D SZA inversion method named Convolutional Variational AutoEncoder—Ensemble Smoother with Multiple Data Assimilation (CVAE-ESMDA) with a process-based (PB) upscaled mass-transfer model. This framework can utilize sparse SZ data to estimate directly mass discharge without multiphase modeling. First, CVAE-ESMDA estimates the SZA by conditioning on sparse data, which is then used as input in the upscaled model for mass-discharge estimation. We evaluated our framework on two real and 30 synthetic bench-scale experiments, with significantly different SZAs and multistage effluent concentrations. The results demonstrate that the CVAE-based inversion method captures the temporal variations in SZ metrics better than standard ordinary kriging. With the improved SZ metrics, the PB model more accurately reproduces the salient patterns of the multistage mass-discharge profiles and associated uncertainty. This approach can be used to provide valuable input for risk-based decision making in remediation applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦啦啦完成签到,获得积分10
刚刚
神秘玩家完成签到 ,获得积分10
3秒前
calemolet应助研友_89jr6L采纳,获得10
5秒前
科研通AI5应助艾克采纳,获得10
6秒前
8秒前
Evelyn完成签到,获得积分10
8秒前
10秒前
蓝天完成签到,获得积分10
11秒前
震动的谷冬完成签到,获得积分20
12秒前
12秒前
聪慧海蓝完成签到 ,获得积分10
13秒前
xinyue发布了新的文献求助10
13秒前
yangmiemie发布了新的文献求助10
17秒前
听话的玉米完成签到,获得积分20
21秒前
21秒前
引子完成签到,获得积分10
22秒前
简单完成签到,获得积分10
22秒前
沉甸甸发布了新的文献求助10
25秒前
xs小仙女完成签到 ,获得积分10
27秒前
27秒前
crazydick发布了新的文献求助10
30秒前
艾克发布了新的文献求助10
32秒前
jzyy完成签到 ,获得积分10
33秒前
无花果应助沉甸甸采纳,获得10
36秒前
38秒前
39秒前
39秒前
qwer发布了新的文献求助10
40秒前
42秒前
42秒前
白樱恋曲完成签到,获得积分10
42秒前
43秒前
τ涛发布了新的文献求助10
45秒前
里维斯发布了新的文献求助20
45秒前
顾矜应助现代的天空采纳,获得10
48秒前
白宇完成签到 ,获得积分10
51秒前
SUnnnnn完成签到,获得积分20
52秒前
小蘑菇应助慕恩呐采纳,获得10
52秒前
54秒前
溫蒂发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322010
关于积分的说明 10208485
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872