Growth Control Strategy of Hydrogen-Containing Nanocrystalline Carbon Films during Plasma-Enhanced Chemical Vapor Deposition based on Molecular Dynamics-Monte Carlo Simulations

材料科学 纳米晶材料 成核 等离子体增强化学气相沉积 无定形碳 化学气相沉积 结晶度 无定形固体 碳纤维 化学工程 薄膜 沉积(地质) 动力学蒙特卡罗方法 纳米技术 化学物理 蒙特卡罗方法 复合数 结晶学 有机化学 复合材料 化学 数学 古生物学 沉积物 工程类 生物 统计
作者
Ju Che,Peiyun Yi,Yujun Deng,Di Zhang,Linfa Peng,Xinmin Lai
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (38): 45475-45484 被引量:5
标识
DOI:10.1021/acsami.3c10157
摘要

Hydrogen-containing nanocrystalline carbon films (n-C:H) with amorphous-nanocrystalline hydrocarbon composite structures exhibit excellent properties in diverse applications. Plasma-enhanced chemical vapor deposition (PECVD) is commonly employed to prepare n-C:H films due to its ability to create an adjustable deposition environment and control film compositions. However, the atomic-scale growth mechanism of n-C:H remains poorly understood, obstructing the design of the appropriate deposition parameters and film compositions. This paper employs a state-of-the-art hybrid molecular dynamics-time-stamped force-biased Monte Carlo model (MD/tfMC) to simulate the plasma-assisted growth of n-C:H. Our results reveal that optimizing the energy of ion bombardments, deposition temperature, and precursor's H:C ratio is crucial for achieving the nucleation and growth of highly ordered n-C:H films. These findings are further validated through experimental observations and density functional theory calculations, which show that hydrogen atoms can promote the formation of nanocrystalline carbon through chemical catalytic processes. Additionally, we find that the crystallinity reaches its optimum when the H/C ratio is equal to 1. These theoretical insights provide an effective strategy for the controlled preparation of hydrogen-containing nanocrystalline carbon films.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aging00发布了新的文献求助10
刚刚
mk91发布了新的文献求助10
1秒前
斯文败类应助1212采纳,获得10
1秒前
1秒前
WanWanYUE完成签到 ,获得积分10
1秒前
所所应助罗Eason采纳,获得10
2秒前
CN1681681完成签到,获得积分10
2秒前
4秒前
wanci应助victormanboy3采纳,获得10
4秒前
乐研客完成签到,获得积分10
4秒前
YOLO完成签到,获得积分10
5秒前
5秒前
胖大星完成签到,获得积分10
6秒前
6秒前
发八篇sci关注了科研通微信公众号
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
ALITTLE完成签到,获得积分10
8秒前
9秒前
小王完成签到,获得积分10
9秒前
可爱的函函应助CN1681681采纳,获得10
9秒前
10秒前
seashell发布了新的文献求助10
10秒前
12秒前
怕黑捕发布了新的文献求助10
13秒前
RK_404完成签到,获得积分20
13秒前
咕咕咕完成签到,获得积分10
14秒前
15秒前
15秒前
爆米花应助延娜采纳,获得10
16秒前
Daniel911完成签到,获得积分10
17秒前
MZY关注了科研通微信公众号
17秒前
spc68应助简啦啦采纳,获得10
18秒前
andrew完成签到 ,获得积分10
18秒前
朴素的山蝶完成签到 ,获得积分10
20秒前
难过的面包完成签到,获得积分20
22秒前
迟迟完成签到 ,获得积分10
23秒前
月光入梦完成签到 ,获得积分10
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604106
求助须知:如何正确求助?哪些是违规求助? 4688956
关于积分的说明 14857141
捐赠科研通 4696700
什么是DOI,文献DOI怎么找? 2541175
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851