Advancing algorithmic drug product development: Recommendations for machine learning approaches in drug formulation

计算机科学 新产品开发 机器学习 人工智能 风险分析(工程) 透明度(行为) 数据科学 药物开发 制药工业 管理科学 生化工程 工程类 药品 医学 营销 业务 精神科 药理学 计算机安全
作者
Jack D. Murray,Justus Johann Lange,Harriet Bennett-Lenane,René Holm,Martin Kuentz,P J O’Dwyer,Brendan T. Griffin
出处
期刊:European Journal of Pharmaceutical Sciences [Elsevier BV]
卷期号:191: 106562-106562 被引量:8
标识
DOI:10.1016/j.ejps.2023.106562
摘要

Artificial intelligence is a rapidly expanding area of research, with the disruptive potential to transform traditional approaches in the pharmaceutical industry, from drug discovery and development to clinical practice. Machine learning, a subfield of artificial intelligence, has fundamentally transformed in silico modelling and has the capacity to streamline clinical translation. This paper reviews data-driven modelling methodologies with a focus on drug formulation development. Despite recent advances, there is limited modelling guidance specific to drug product development and a trend towards suboptimal modelling practices, resulting in models that may not give reliable predictions in practice. There is an overwhelming focus on benchtop experimental outcomes obtained for a specific modelling aim, leaving the capabilities of data scraping or the use of combined modelling approaches yet to be fully explored. Moreover, the preference for high accuracy can lead to a reliance on black box methods over interpretable models. This further limits the widespread adoption of machine learning as black boxes yield models that cannot be easily understood for the purposes of enhancing product performance. In this review, recommendations for conducting machine learning research for drug product development to ensure trustworthiness, transparency, and reliability of the models produced are presented. Finally, possible future directions on how research in this area might develop are discussed to aim for models that provide useful and robust guidance to formulators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
欣慰友梅完成签到,获得积分10
2秒前
青春发布了新的文献求助10
2秒前
3秒前
4秒前
善学以致用应助XXHH采纳,获得10
4秒前
4秒前
欣慰友梅发布了新的文献求助10
5秒前
6秒前
7秒前
上官若男应助沉默的凝云采纳,获得30
7秒前
科研通AI5应助una采纳,获得10
8秒前
8秒前
野火197完成签到,获得积分10
8秒前
淡然善斓完成签到,获得积分10
9秒前
9秒前
Leeon完成签到,获得积分10
9秒前
灵灵发布了新的文献求助20
10秒前
朱朱朱朱完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
pebble完成签到,获得积分10
12秒前
岁大爷发布了新的文献求助20
12秒前
猎空完成签到,获得积分10
12秒前
微笑笑南发布了新的文献求助10
12秒前
隐形曼青应助小姜采纳,获得10
13秒前
yuanweisun发布了新的文献求助30
14秒前
yuu发布了新的文献求助10
14秒前
星川发布了新的文献求助30
16秒前
16秒前
共享精神应助朱朱朱朱采纳,获得10
16秒前
潘潘潘完成签到 ,获得积分10
16秒前
blue应助Edwin采纳,获得20
17秒前
Jasper应助lkx采纳,获得10
18秒前
19秒前
青春发布了新的文献求助10
21秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846643
求助须知:如何正确求助?哪些是违规求助? 3389216
关于积分的说明 10556235
捐赠科研通 3109602
什么是DOI,文献DOI怎么找? 1713825
邀请新用户注册赠送积分活动 824934
科研通“疑难数据库(出版商)”最低求助积分说明 775135