Enhancement of water collection efficiency by optimizing hole size and ratio of hydrophilic-superhydrophobic area on hybrid surfaces

材料科学 表面积体积比 纵横比(航空) 纳米技术 环境科学 化学工程 复合材料 工程类
作者
Chuang Liu,Ruoyu Sun,Jing Zhao,Yixian Hu,Jiliang Mo
出处
期刊:Journal of environmental chemical engineering [Elsevier BV]
卷期号:11 (5): 111082-111082 被引量:9
标识
DOI:10.1016/j.jece.2023.111082
摘要

The scarcity of freshwater resources has had a significant impact on human life and wildlife survival. Fog harvesting has emerged as one of the most effective solutions to alleviate water scarcity in arid areas. At present, researchers have focused on optimizing hybrid surface designs to capture fog from the air and convert it into water droplets. Here, we prepared a hybrid surface for fog harvesting by a combination of chemical etching and surface modification with mechanical drilling. By adjusting the hole size and the ratio of hydrophilic-superhydrophobic area of the hybrid surfaces, the water collection efficiency was improved. The results indicated that the hole size affected the critical size of sliding water droplets, and the ratio of hydrophilic-superhydrophobic area affected the water droplet sliding speed and water collection frequency, thereby affecting the water collection efficiency per unit time. Therefore, by matching a specific hole size and ratio of hydrophilic-superhydrophobic area, the water collection volume and mobility of water droplets on the hybrid surfaces reached a dynamic equilibrium, achieving the optimal water collection efficiency. When the hole size was 1.0 mm, and the ratio of hydrophilic-superhydrophobic area was 1:4, the highest water collection rate was 805 mg/cm2/h, and the water collection efficiency was 17.5 %. By optimizing the hole size and the ratio of hydrophilic-superhydrophobic area, the water collection efficiency of the hybrid surface was maximized. This lays a solid foundation for promoting the practical applications of hybrid surfaces for fog harvesting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助cslghe采纳,获得10
刚刚
大模型应助嘻嘻嘻采纳,获得10
刚刚
灬灬发布了新的文献求助30
1秒前
1秒前
迷路冰露完成签到,获得积分10
1秒前
2秒前
木猫发布了新的文献求助10
2秒前
鄢懋卿应助fanfan要努力采纳,获得10
2秒前
3秒前
neonsun完成签到,获得积分0
3秒前
3秒前
3秒前
芋泥卷的芋泥完成签到,获得积分10
4秒前
兔子完成签到,获得积分10
4秒前
4秒前
无花果应助tree薯要吃麦麦采纳,获得10
4秒前
17发布了新的文献求助10
5秒前
5秒前
是个憨憨完成签到,获得积分10
7秒前
烟花应助68686868采纳,获得10
7秒前
nono发布了新的文献求助10
8秒前
小竹笋发布了新的文献求助10
8秒前
阿迪发布了新的文献求助10
8秒前
9秒前
Orange应助ssssxr采纳,获得10
9秒前
9秒前
tqs发布了新的文献求助10
9秒前
zk发布了新的文献求助20
9秒前
10秒前
10秒前
11秒前
polarisblue发布了新的文献求助30
12秒前
12秒前
采珺发布了新的文献求助10
12秒前
情怀应助繁荣的夏烟采纳,获得10
13秒前
13秒前
甜美的夏之完成签到,获得积分10
14秒前
沟通亿心发布了新的文献求助10
16秒前
乐观鑫发布了新的文献求助10
16秒前
酷波er应助nono采纳,获得10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794983
求助须知:如何正确求助?哪些是违规求助? 3339916
关于积分的说明 10298125
捐赠科研通 3056504
什么是DOI,文献DOI怎么找? 1677041
邀请新用户注册赠送积分活动 805105
科研通“疑难数据库(出版商)”最低求助积分说明 762333