已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bandits atop Reinforcement Learning: Tackling Online Inventory Models with Cyclic Demands

后悔 杠杆(统计) 强化学习 计算机科学 上下界 匹配(统计) 订单(交换) 先验与后验 数学优化 数理经济学 经济 人工智能 数学 机器学习 统计 数学分析 哲学 财务 认识论
作者
X. H. Gong,David Simchi‐Levi
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:13
标识
DOI:10.1287/mnsc.2023.4947
摘要

Motivated by a long-standing gap between inventory theory and practice, we study online inventory models with unknown cyclic demand distributions. We design provably efficient reinforcement learning (RL) algorithms that leverage the structure of inventory problems to achieve optimal theoretical guarantees that surpass existing results. We apply the standard performance measure in online learning literature, regret, which is defined as the difference between the total expected cost of our policy and the total expected cost of the clairvoyant optimal policy that has full knowledge of the demand distributions a priori. This paper analyzes, in the presence of unknown cyclic demands, both the lost-sales model with zero lead time and the multiproduct backlogging model with positive lead times, fixed joint-ordering costs and order limits. For both models, we first introduce episodic models where inventory is discarded at the end of every cycle, and then build upon these results to analyze the nondiscarding models. Our RL policies HQL and FQL achieve [Formula: see text] regret for the episodic lost-sales model and the episodic multiproduct backlogging model, matching the regret lower bound that we prove in this paper. For the nondiscarding models, we construct a bandit learning algorithm on top that governs multiple copies of the previous RL algorithms, named Meta-HQL. Meta-HQL achieves [Formula: see text] regret for the nondiscarding lost-sales model with zero lead time, again matching the regret lower bound. For the nondiscarding multiproduct backlogging model, our policy Mimic-QL achieves [Formula: see text] regret. Our policies remove the regret dependence on the cardinality of the state-action space for inventory problems, which is an improvement over existing RL algorithms. We conducted experiments with a real sales data set from Rossmann, one of the largest drugstore chains in Europe, and also with a synthetic data set. For both sets of experiments, our policy converges rapidly to the optimal policy and dramatically outperforms the best policy that models demand as independent and identically distributed instead of cyclic. This paper was accepted by J. George Shanthikumar, data science. Funding: X.-Y. Gong was partially supported by an Accenture Fellowship. The work of X.-Y. Gong and D. Simchi-Levi was partially supported by the MIT Data Science Lab. Supplemental Material: The data and online appendices are available at https://doi.org/10.1287/mnsc.2023.4947 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注玩手机的可乐完成签到 ,获得积分10
1秒前
卡思完成签到,获得积分10
4秒前
7秒前
在水一方应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
今后应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
无花果应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
白若宇发布了新的文献求助10
12秒前
13秒前
qc发布了新的文献求助10
15秒前
芋头发布了新的文献求助20
16秒前
16秒前
白若宇完成签到,获得积分10
24秒前
张元东完成签到 ,获得积分10
26秒前
老王爱学习完成签到,获得积分10
28秒前
负责柚子完成签到 ,获得积分10
32秒前
32秒前
今后应助芝士雪豹采纳,获得10
36秒前
浮华发布了新的文献求助10
37秒前
qc完成签到,获得积分10
38秒前
47秒前
云槿完成签到 ,获得积分10
47秒前
小菜完成签到,获得积分10
48秒前
52秒前
yanzw发布了新的文献求助10
54秒前
单纯的石头完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5839512
求助须知:如何正确求助?哪些是违规求助? 6140855
关于积分的说明 15603706
捐赠科研通 4957382
什么是DOI,文献DOI怎么找? 2672246
邀请新用户注册赠送积分活动 1617304
关于科研通互助平台的介绍 1572300