Bandits atop Reinforcement Learning: Tackling Online Inventory Models with Cyclic Demands

后悔 杠杆(统计) 强化学习 计算机科学 上下界 匹配(统计) 订单(交换) 先验与后验 数学优化 数理经济学 经济 人工智能 数学 机器学习 统计 数学分析 哲学 财务 认识论
作者
X. H. Gong,David Simchi‐Levi
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:13
标识
DOI:10.1287/mnsc.2023.4947
摘要

Motivated by a long-standing gap between inventory theory and practice, we study online inventory models with unknown cyclic demand distributions. We design provably efficient reinforcement learning (RL) algorithms that leverage the structure of inventory problems to achieve optimal theoretical guarantees that surpass existing results. We apply the standard performance measure in online learning literature, regret, which is defined as the difference between the total expected cost of our policy and the total expected cost of the clairvoyant optimal policy that has full knowledge of the demand distributions a priori. This paper analyzes, in the presence of unknown cyclic demands, both the lost-sales model with zero lead time and the multiproduct backlogging model with positive lead times, fixed joint-ordering costs and order limits. For both models, we first introduce episodic models where inventory is discarded at the end of every cycle, and then build upon these results to analyze the nondiscarding models. Our RL policies HQL and FQL achieve [Formula: see text] regret for the episodic lost-sales model and the episodic multiproduct backlogging model, matching the regret lower bound that we prove in this paper. For the nondiscarding models, we construct a bandit learning algorithm on top that governs multiple copies of the previous RL algorithms, named Meta-HQL. Meta-HQL achieves [Formula: see text] regret for the nondiscarding lost-sales model with zero lead time, again matching the regret lower bound. For the nondiscarding multiproduct backlogging model, our policy Mimic-QL achieves [Formula: see text] regret. Our policies remove the regret dependence on the cardinality of the state-action space for inventory problems, which is an improvement over existing RL algorithms. We conducted experiments with a real sales data set from Rossmann, one of the largest drugstore chains in Europe, and also with a synthetic data set. For both sets of experiments, our policy converges rapidly to the optimal policy and dramatically outperforms the best policy that models demand as independent and identically distributed instead of cyclic. This paper was accepted by J. George Shanthikumar, data science. Funding: X.-Y. Gong was partially supported by an Accenture Fellowship. The work of X.-Y. Gong and D. Simchi-Levi was partially supported by the MIT Data Science Lab. Supplemental Material: The data and online appendices are available at https://doi.org/10.1287/mnsc.2023.4947 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
最落幕完成签到 ,获得积分10
刚刚
1秒前
闫辰龙发布了新的文献求助10
3秒前
4秒前
科研完成签到,获得积分10
4秒前
郑倩文发布了新的文献求助10
5秒前
aluo发布了新的文献求助10
5秒前
6秒前
7秒前
Youx完成签到,获得积分10
9秒前
9秒前
1028发布了新的文献求助30
10秒前
文献完成签到,获得积分10
12秒前
happyrrc完成签到 ,获得积分10
13秒前
他二舅flying完成签到,获得积分10
14秒前
15秒前
ppki完成签到,获得积分10
15秒前
狄秋白发布了新的文献求助10
15秒前
香蕉觅云应助文献采纳,获得10
18秒前
19秒前
ysx发布了新的文献求助10
20秒前
研友_Lmb15n完成签到,获得积分10
21秒前
21秒前
HK完成签到,获得积分10
26秒前
26秒前
HK发布了新的文献求助10
28秒前
29秒前
29秒前
赵玉蔓完成签到,获得积分20
32秒前
32秒前
fxsg发布了新的文献求助30
32秒前
碧蓝笑槐发布了新的文献求助10
33秒前
33秒前
赵玉蔓发布了新的文献求助10
35秒前
36秒前
科研通AI6.1应助1028采纳,获得10
36秒前
赘婿应助旺仔采纳,获得10
39秒前
wuhao发布了新的文献求助10
40秒前
grisco发布了新的文献求助10
40秒前
嗯嗯完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5842463
求助须知:如何正确求助?哪些是违规求助? 6173217
关于积分的说明 15609409
捐赠科研通 4959682
什么是DOI,文献DOI怎么找? 2673881
邀请新用户注册赠送积分活动 1618783
关于科研通互助平台的介绍 1573939