亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bandits atop Reinforcement Learning: Tackling Online Inventory Models with Cyclic Demands

后悔 杠杆(统计) 强化学习 计算机科学 上下界 匹配(统计) 订单(交换) 先验与后验 数学优化 数理经济学 经济 人工智能 数学 机器学习 统计 哲学 数学分析 认识论 财务
作者
X. H. Gong,David Simchi‐Levi
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:13
标识
DOI:10.1287/mnsc.2023.4947
摘要

Motivated by a long-standing gap between inventory theory and practice, we study online inventory models with unknown cyclic demand distributions. We design provably efficient reinforcement learning (RL) algorithms that leverage the structure of inventory problems to achieve optimal theoretical guarantees that surpass existing results. We apply the standard performance measure in online learning literature, regret, which is defined as the difference between the total expected cost of our policy and the total expected cost of the clairvoyant optimal policy that has full knowledge of the demand distributions a priori. This paper analyzes, in the presence of unknown cyclic demands, both the lost-sales model with zero lead time and the multiproduct backlogging model with positive lead times, fixed joint-ordering costs and order limits. For both models, we first introduce episodic models where inventory is discarded at the end of every cycle, and then build upon these results to analyze the nondiscarding models. Our RL policies HQL and FQL achieve [Formula: see text] regret for the episodic lost-sales model and the episodic multiproduct backlogging model, matching the regret lower bound that we prove in this paper. For the nondiscarding models, we construct a bandit learning algorithm on top that governs multiple copies of the previous RL algorithms, named Meta-HQL. Meta-HQL achieves [Formula: see text] regret for the nondiscarding lost-sales model with zero lead time, again matching the regret lower bound. For the nondiscarding multiproduct backlogging model, our policy Mimic-QL achieves [Formula: see text] regret. Our policies remove the regret dependence on the cardinality of the state-action space for inventory problems, which is an improvement over existing RL algorithms. We conducted experiments with a real sales data set from Rossmann, one of the largest drugstore chains in Europe, and also with a synthetic data set. For both sets of experiments, our policy converges rapidly to the optimal policy and dramatically outperforms the best policy that models demand as independent and identically distributed instead of cyclic. This paper was accepted by J. George Shanthikumar, data science. Funding: X.-Y. Gong was partially supported by an Accenture Fellowship. The work of X.-Y. Gong and D. Simchi-Levi was partially supported by the MIT Data Science Lab. Supplemental Material: The data and online appendices are available at https://doi.org/10.1287/mnsc.2023.4947 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
找文献完成签到 ,获得积分10
1秒前
柏风华完成签到,获得积分10
8秒前
18秒前
21秒前
24秒前
25秒前
Irene发布了新的文献求助10
25秒前
科研通AI6应助殷楷霖采纳,获得10
29秒前
踏实的无敌完成签到,获得积分10
29秒前
Akim应助菜新采纳,获得10
36秒前
Irene完成签到,获得积分20
36秒前
爆米花应助科研通管家采纳,获得10
38秒前
和谐以冬完成签到 ,获得积分10
38秒前
桐桐应助Irene采纳,获得10
44秒前
奋斗思柔完成签到,获得积分10
46秒前
47秒前
light派发布了新的文献求助10
56秒前
博弈完成签到 ,获得积分10
1分钟前
清爽冬莲完成签到 ,获得积分0
1分钟前
牛八先生完成签到,获得积分10
1分钟前
殷楷霖发布了新的文献求助10
1分钟前
盛夏如花发布了新的文献求助10
1分钟前
wenyiboy完成签到,获得积分10
1分钟前
yb完成签到,获得积分10
1分钟前
殷楷霖发布了新的文献求助10
1分钟前
weibo完成签到,获得积分10
1分钟前
水晶鞋完成签到 ,获得积分10
1分钟前
殷楷霖发布了新的文献求助10
1分钟前
优秀冰真完成签到,获得积分10
2分钟前
2分钟前
快乐咸鱼完成签到 ,获得积分10
2分钟前
菜新发布了新的文献求助10
2分钟前
2分钟前
gxx发布了新的文献求助10
2分钟前
服了您完成签到 ,获得积分10
2分钟前
科研王帝同学完成签到 ,获得积分10
2分钟前
在水一方应助gxx采纳,获得10
2分钟前
kyokyoro完成签到,获得积分10
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644502
求助须知:如何正确求助?哪些是违规求助? 4764327
关于积分的说明 15025209
捐赠科研通 4802884
什么是DOI,文献DOI怎么找? 2567685
邀请新用户注册赠送积分活动 1525344
关于科研通互助平台的介绍 1484802