Stereo Matching Algorithm of Multi-Feature Fusion Based on Improved Census Transform

算法 像素 计算机科学 匹配(统计) 人工智能 Blossom算法 噪音(视频) 特征(语言学) 点集注册 模式识别(心理学) 计算机视觉 点(几何) 数学 图像(数学) 统计 语言学 哲学 几何学
作者
Ziqi Zhou,Mao Pang
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (22): 4594-4594 被引量:4
标识
DOI:10.3390/electronics12224594
摘要

This article proposes an improved stereo matching algorithm in order to address the issue that the conventional Census transform is overly dependent on the center pixel of the window, which makes the algorithm susceptible to noise interference and results in low matching accuracy in regions with weak texture and complex texture. In the cost calculation stage, the noise threshold is set utilizing the absolute difference detection approach, and pixels that exceed the threshold are replaced with the mean gray values of the neighboring pixels in the 3 × 3 window. This stage also includes the introduction of the gradient cost, which is coupled with the edge and feature point information to provide the final matching cost. The cross approach is employed to build the adaptive support domain and aggregate the costs during the cost aggregation stage. The disparity is finally calculated using the WTA technique, and a multi-step refinement process is employed to produce the final disparity map. The experiments demonstrate that the proposed algorithm has good anti-noise performance. Compared with other improved algorithms or composite algorithms, the average matching rate of the four standard images on the Middlebury test platform is 5.53%, which is higher than the remaining algorithms, indicating that the matching accuracy is high. The proposed algorithm provides ideas for subsequent improved algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyominhsu完成签到,获得积分10
刚刚
C2H5MgBr完成签到,获得积分10
刚刚
GJT0427gjt完成签到,获得积分10
刚刚
family365完成签到,获得积分20
1秒前
Jasper应助WSGQT采纳,获得10
1秒前
于芋菊应助lynn采纳,获得200
1秒前
小蘑菇应助C.Z.Young采纳,获得10
1秒前
眼睛大的电脑完成签到,获得积分10
1秒前
siyan156完成签到,获得积分10
1秒前
2秒前
2秒前
科研通AI2S应助莫妮卡卡采纳,获得10
2秒前
黄毅完成签到,获得积分10
2秒前
牛小牛完成签到,获得积分10
2秒前
沉静青旋发布了新的文献求助10
2秒前
马金利完成签到,获得积分10
2秒前
t通应助Ranger_M采纳,获得10
3秒前
冀北山人完成签到,获得积分10
3秒前
liucc完成签到,获得积分10
3秒前
未改完成签到,获得积分10
4秒前
4秒前
无敌吴硕完成签到,获得积分10
4秒前
iNk应助茹茹采纳,获得10
5秒前
5秒前
wuzhoumeng完成签到,获得积分0
5秒前
务实的听枫完成签到,获得积分10
5秒前
5秒前
我是张铁柱·完成签到,获得积分10
6秒前
ECCE发布了新的文献求助10
6秒前
6秒前
迅速泽洋完成签到,获得积分10
6秒前
shirley完成签到,获得积分10
6秒前
朱小毛完成签到,获得积分10
6秒前
科研通AI5应助11采纳,获得10
6秒前
小杨发布了新的文献求助10
7秒前
7秒前
潇洒的冰烟完成签到,获得积分10
7秒前
阿宅完成签到,获得积分10
8秒前
8秒前
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785072
求助须知:如何正确求助?哪些是违规求助? 3330486
关于积分的说明 10246402
捐赠科研通 3045842
什么是DOI,文献DOI怎么找? 1671749
邀请新用户注册赠送积分活动 800814
科研通“疑难数据库(出版商)”最低求助积分说明 759665