Demonstrating the successful application of synthetic learning in spine surgery for training multi–center models with increased patient privacy

人工智能 计算机科学 卷积神经网络 深度学习 机器学习 射线照相术 分类器(UML) 合成数据 自编码 模式识别(心理学) 放射科 医学
作者
Ethan Schonfeld,Anand Veeravagu
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:10
标识
DOI:10.1038/s41598-023-39458-y
摘要

From real-time tumor classification to operative outcome prediction, applications of machine learning to neurosurgery are powerful. However, the translation of many of these applications are restricted by the lack of "big data" in neurosurgery. Important restrictions in patient privacy and sharing of imaging data reduce the diversity of the datasets used to train resulting models and therefore limit generalizability. Synthetic learning is a recent development in machine learning that generates synthetic data from real data and uses the synthetic data to train downstream models while preserving patient privacy. Such an approach has yet to be successfully demonstrated in the spine surgery domain. Spine radiographs were collected from the VinDR-SpineXR dataset, with 1470 labeled as abnormal and 2303 labeled as normal. A conditional generative adversarial network (GAN) was trained on the radiographs to generate a spine radiograph and normal/abnormal label. A modified conditional GAN (SpineGAN) was trained on the same task. A convolutional neural network (CNN) was trained using the real data to label abnormal radiographs. A CNN was trained to label abnormal radiographs using synthetic images from the GAN and in a separate experiment from SpineGAN. Using the real radiographs, an AUC of 0.856 was achieved in abnormality classification. Training on synthetic data generated by the standard GAN (AUC of 0.814) and synthetic data generated by our SpineGAN (AUC of 0.830) resulted in similar classifier performance. SpineGAN generated images with higher FID and lower precision scores, but with higher recall and increased performance when used for synthetic learning. The successful application of synthetic learning was demonstrated in the spine surgery domain for the classification of spine radiographs as abnormal or normal. A modified domain-relevant GAN is introduced for the generation of spine images, evidencing the importance of domain-relevant generation techniques in synthetic learning. Synthetic learning can allow neurosurgery to use larger and more diverse patient imaging sets to train more generalizable algorithms with greater patient privacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lqc完成签到,获得积分20
刚刚
Selena发布了新的文献求助10
刚刚
个性元枫发布了新的文献求助10
刚刚
1秒前
饱满的百招完成签到 ,获得积分10
2秒前
文鞅发布了新的文献求助30
2秒前
wubangze发布了新的文献求助10
3秒前
lqc发布了新的文献求助10
3秒前
Certainty橙子完成签到 ,获得积分10
4秒前
JamesPei应助桃桃杨乐多采纳,获得10
4秒前
科研通AI5应助丰富的以筠采纳,获得10
4秒前
clove完成签到 ,获得积分10
6秒前
的地方法规完成签到,获得积分10
6秒前
8秒前
积极的尔白完成签到 ,获得积分10
8秒前
9秒前
吴咪发布了新的文献求助10
10秒前
在水一方应助梅雨季来信采纳,获得10
11秒前
谨慎乌完成签到,获得积分10
11秒前
大大怪完成签到,获得积分10
12秒前
12秒前
13秒前
专一的惜霜完成签到,获得积分10
13秒前
YMM发布了新的文献求助10
13秒前
14秒前
14秒前
昂口3完成签到 ,获得积分10
15秒前
夏冰完成签到,获得积分10
16秒前
16秒前
wubangze完成签到,获得积分10
16秒前
17秒前
天天快乐应助bian采纳,获得10
19秒前
zho发布了新的文献求助10
19秒前
20秒前
21秒前
www发布了新的文献求助10
22秒前
吴咪完成签到,获得积分20
22秒前
魏海龙完成签到,获得积分10
22秒前
23秒前
可可可爱完成签到 ,获得积分10
23秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843639
求助须知:如何正确求助?哪些是违规求助? 3385923
关于积分的说明 10542998
捐赠科研通 3106709
什么是DOI,文献DOI怎么找? 1711095
邀请新用户注册赠送积分活动 823920
科研通“疑难数据库(出版商)”最低求助积分说明 774383