人工智能
计算机科学
卷积神经网络
深度学习
机器学习
射线照相术
分类器(UML)
合成数据
自编码
模式识别(心理学)
放射科
医学
作者
Ethan Schonfeld,Anand Veeravagu
标识
DOI:10.1038/s41598-023-39458-y
摘要
From real-time tumor classification to operative outcome prediction, applications of machine learning to neurosurgery are powerful. However, the translation of many of these applications are restricted by the lack of "big data" in neurosurgery. Important restrictions in patient privacy and sharing of imaging data reduce the diversity of the datasets used to train resulting models and therefore limit generalizability. Synthetic learning is a recent development in machine learning that generates synthetic data from real data and uses the synthetic data to train downstream models while preserving patient privacy. Such an approach has yet to be successfully demonstrated in the spine surgery domain. Spine radiographs were collected from the VinDR-SpineXR dataset, with 1470 labeled as abnormal and 2303 labeled as normal. A conditional generative adversarial network (GAN) was trained on the radiographs to generate a spine radiograph and normal/abnormal label. A modified conditional GAN (SpineGAN) was trained on the same task. A convolutional neural network (CNN) was trained using the real data to label abnormal radiographs. A CNN was trained to label abnormal radiographs using synthetic images from the GAN and in a separate experiment from SpineGAN. Using the real radiographs, an AUC of 0.856 was achieved in abnormality classification. Training on synthetic data generated by the standard GAN (AUC of 0.814) and synthetic data generated by our SpineGAN (AUC of 0.830) resulted in similar classifier performance. SpineGAN generated images with higher FID and lower precision scores, but with higher recall and increased performance when used for synthetic learning. The successful application of synthetic learning was demonstrated in the spine surgery domain for the classification of spine radiographs as abnormal or normal. A modified domain-relevant GAN is introduced for the generation of spine images, evidencing the importance of domain-relevant generation techniques in synthetic learning. Synthetic learning can allow neurosurgery to use larger and more diverse patient imaging sets to train more generalizable algorithms with greater patient privacy.
科研通智能强力驱动
Strongly Powered by AbleSci AI