A New Time Series Framework for Forest Fire Risk Forecasting and Classification

生物群落 随机森林 计算机科学 环境科学 环境资源管理 机器学习 生态系统 生态学 生物
作者
Bruna Zamith Santos,B. M. A. Soriano,Marcelo Gonçalves Narciso,Diego Furtado Silva,Ricardo Cerri
标识
DOI:10.1109/ijcnn54540.2023.10191502
摘要

There's an increasing concern about the occurrence and spread of forest fires across the globe, as they contribute to greenhouse gas emissions and play a major influential role in economics and public health. Thus, there's a need for accurate methods to predict and classify forest fire risk. The main known forest fire risk indexes have limitations, such as not taking into account the unique characteristics of the biome in study, and not being able to predict forest fire risk for a given number of days in the future. This last aspect, in particular, is of utmost relevance. Addressing it allows for coordinated planning and action by proper authorities with adequate anticipation. Aiming to solve this problem, we present a new framework that applies Machine Learning methods for: (1) climatic variables forecasting; and (2) forest fire risk classification. For the first objective, different time series forecasting algorithms were tested. The forecasted variables are then used as input for the second objective, for which different classification algorithms were also tested. We evaluated our proposal using Brazilian Pantanal regional biome data from 1999 to 2019, where climatic variables were collected from ground meteorological stations, and fire occurrences (hotspots) were obtained from satellite images. The experiments considered 4 climatic variables and 5 forest fire risk classes. The results were evaluated based on the average correlation between (i) the prediction of forest fire risk classes and (ii) the observation of hotspots. Our proposal proved to be better or competitive with the main forest fire risk indexes, with the advantage of predicting fire risk for a given number of days in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rhx发布了新的文献求助10
1秒前
1秒前
2秒前
rose发布了新的文献求助10
2秒前
浮生若梦完成签到,获得积分10
3秒前
3秒前
3秒前
goodgoodstudy发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
111231完成签到,获得积分10
5秒前
动听涔雨完成签到,获得积分10
5秒前
坦率的匪应助Annora采纳,获得20
5秒前
Flyzhang发布了新的文献求助10
5秒前
8秒前
科研通AI6应助西瓜采纳,获得10
9秒前
111231发布了新的文献求助10
9秒前
打卡下班应助虚幻心锁采纳,获得10
10秒前
keyan完成签到 ,获得积分10
11秒前
11秒前
coconut发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
情怀应助完美的老头采纳,获得10
13秒前
奔铂儿钯完成签到,获得积分10
14秒前
科研通AI2S应助顺心绾绾采纳,获得10
15秒前
嗯呐完成签到,获得积分10
15秒前
17秒前
我爱罗发布了新的文献求助10
17秒前
香蕉觅云应助栗子采纳,获得10
18秒前
大海完成签到 ,获得积分10
18秒前
19秒前
19秒前
杨柳发布了新的文献求助10
19秒前
20秒前
星辰大海应助李键刚采纳,获得10
20秒前
领导范儿应助Yang_728采纳,获得30
20秒前
21秒前
YH发布了新的文献求助10
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4239435
求助须知:如何正确求助?哪些是违规求助? 3773195
关于积分的说明 11849854
捐赠科研通 3428981
什么是DOI,文献DOI怎么找? 1881887
邀请新用户注册赠送积分活动 933971
科研通“疑难数据库(出版商)”最低求助积分说明 840639