ETDNet: Efficient Transformer-Based Detection Network for Surface Defect Detection

计算机科学 人工智能 特征提取 模式识别(心理学) 变压器 特征学习 特征(语言学) 目标检测 工程类 电压 语言学 电气工程 哲学
作者
Hantao Zhou,Rui Yang,Runze Hu,Chang Shu,Xiaochu Tang,Xiu Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:67
标识
DOI:10.1109/tim.2023.3307753
摘要

Deep learning-based surface defect detectors play a crucial role in ensuring product quality during inspection processes. However, accurately and efficiently detecting defects remains challenging due to specific characteristics inherent in defective images, involving a high degree of foreground-background similarity, scale variation, and shape variation. To address this challenge, we propose an efficient Transformer-based detection network, ETDNet, consisting of three novel designs to achieve superior performance. Firstly, ETDNet takes a lightweight Vision Transformer to extract representative global features. This approach ensures an accurate feature characterization of defects even with similar backgrounds. Secondly, a channel-modulated feature pyramid network (CM-FPN) is devised to fuse multi-level features and maintain critical information from corresponding levels. Lastly, a novel task-oriented decoupled (TOD) head is introduced to tackle inconsistent representation between classification and regression tasks. The TOD head employs a local feature representation module to learn object-aware local features and introduces a global feature representation module, based on the attention mechanism, to learn content-aware global features. By integrating these two modules into the head, ETDNet can effectively classify and perceive defects with varying shapes and scales. Extensive experiments on various defect detection datasets demonstrate the effectiveness of the proposed ETDNet. For instance, it achieves AP 46.7% (v.s. 45.9%), and AP 50 80.2% (v.s. 79.1%) with 49 FPS on NeU-DET. Code is available at https://github.com/zht8506/ETDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助金博洋采纳,获得10
刚刚
ZzzzzzZ困困完成签到,获得积分20
1秒前
FFZ完成签到,获得积分10
2秒前
葡萄糖完成签到,获得积分10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
wanci应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
优美紫槐应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
Wind应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
Wind应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
spc68应助科研通管家采纳,获得10
2秒前
优美紫槐应助科研通管家采纳,获得10
2秒前
spc68应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
优美紫槐应助科研通管家采纳,获得10
2秒前
6666应助科研通管家采纳,获得10
2秒前
优美紫槐应助科研通管家采纳,获得10
3秒前
3秒前
所所应助科研通管家采纳,获得10
3秒前
优美紫槐应助科研通管家采纳,获得10
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
geed809应助科研通管家采纳,获得10
3秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5744973
求助须知:如何正确求助?哪些是违规求助? 5423202
关于积分的说明 15351528
捐赠科研通 4885111
什么是DOI,文献DOI怎么找? 2626351
邀请新用户注册赠送积分活动 1575090
关于科研通互助平台的介绍 1531858