材料科学
电解质
离子电导率
电导率
聚合物
化学工程
快离子导体
锂(药物)
电极
阴极
金属
离子键合
离子
复合材料
化学
有机化学
冶金
物理化学
医学
工程类
内分泌学
作者
Jun Yang,Rongrong Li,Panpan Zhang,Jingmin Zhang,Jia Meng,Longwei Li,Zheng Li,Xiong Pu
标识
DOI:10.1016/j.ensm.2023.103088
摘要
Low ionic conductivity and unsatisfactory mechanical properties of the solid polymer electrolytes hinder their applications of in solid-state lithium metal batteries. Herein, we design a polymer-in-salt solid electrolyte (PISSE) with multiple Li+ transport paths and crosslinked polymer chain networks, endowing the PISSE with both high mechanical strength and high ionic conductivity. The optimized PISSE can therefore reach ionic conductivity of 3.03×10−4 S cm−1 (25 °C) and the mechanical strength of 0.811 MPa. The percolation model explains that the salt-rich clusters account for the extra fast ion transfer paths; whereas, the crosslinking structure compensates the loss of mechanical strength at high salt concentration. Finally, the in situ polymerization of PISSE promotes the electrode-electrolyte interface compatibility, resulting in the Li//PISSE60%@LiFePO4 cells with 71% (initial capacity: 111.8 mAh g−1) of capacity retention after 800 cycles at 0.5 C. Moreover, the PISSE also exhibits compatibility with high voltage cathode LiFe0.2Mn0.8PO4 cells up to 4.3 V. Therefore, this work provides a practical strategy to fabricate stable solid electrolytes for next-generation lithium metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI