清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An efficient framework for solving forward and inverse problems of nonlinear partial differential equations via enhanced physics-informed neural network based on adaptive learning

非线性系统 偏微分方程 人工神经网络 物理 反问题 约束(计算机辅助设计) 功能(生物学) 应用数学 反向 深度学习 数学优化 人工智能 计算机科学 数学分析 数学 几何学 量子力学 进化生物学 生物
作者
Yanan Guo,Xiaoqun Cao,Junqiang Song,Hongze Leng,Kecheng Peng
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (10) 被引量:9
标识
DOI:10.1063/5.0168390
摘要

In recent years, the advancement of deep learning has led to the utilization of related technologies to enhance the efficiency and accuracy of scientific computing. Physics-Informed Neural Networks (PINNs) are a type of deep learning method applied to scientific computing, widely used to solve various partial differential equations (PDEs), demonstrating tremendous potential. This study improved upon original PINNs and applied them to forward and inverse problems in the nonlinear science field. In addition to incorporating the constraints of PDEs, the improved PINNs added constraints on gradient information, which further enhanced the physical constraints. Moreover, an adaptive learning method was used to update the weight coefficients of the loss function and dynamically adjust the weight proportion of each constraint term. In the experiment, the improved PINNs were used to numerically simulate localized waves and two-dimensional lid-driven cavity flow described by partial differential equations. Meanwhile, we critically evaluate the accuracy of the prediction results. Furthermore, the improved PINNs were utilized to solve the inverse problems of nonlinear PDEs, where the results showed that even with noisy data, the unknown parameters could be discovered satisfactorily. The study results indicated that the improved PINNs were significantly superior to original PINNs, with shorter training time, increased accuracy in prediction results, and greater potential for application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SciGPT应助细心的语蓉采纳,获得10
2秒前
4秒前
ENIX完成签到,获得积分10
7秒前
13秒前
14秒前
善良的剑通完成签到 ,获得积分10
16秒前
17秒前
zty568发布了新的文献求助10
19秒前
21秒前
24秒前
28秒前
34秒前
庄怀逸完成签到 ,获得积分10
42秒前
Guo完成签到 ,获得积分10
44秒前
旅程完成签到 ,获得积分10
48秒前
木头完成签到 ,获得积分10
52秒前
英喆完成签到 ,获得积分10
58秒前
拼搏的羊青完成签到,获得积分10
1分钟前
1分钟前
twk完成签到,获得积分10
1分钟前
twk发布了新的文献求助10
1分钟前
HaoHao04完成签到 ,获得积分10
1分钟前
斯文败类应助张超采纳,获得10
1分钟前
1分钟前
1分钟前
firesquall完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Smoiy完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
ding应助Tethys采纳,获得10
2分钟前
火焰向上发布了新的文献求助10
2分钟前
火焰向上完成签到,获得积分10
2分钟前
2分钟前
2分钟前
自然的含蕾完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784818
求助须知:如何正确求助?哪些是违规求助? 3330065
关于积分的说明 10244252
捐赠科研通 3045410
什么是DOI,文献DOI怎么找? 1671678
邀请新用户注册赠送积分活动 800597
科研通“疑难数据库(出版商)”最低求助积分说明 759524