AI on the Front Lines: A Primer for the Military Health Professional

互操作性 医疗保健 文档 计算机科学 过程管理 工程管理 计算机安全 业务 工程类 政治学 操作系统 程序设计语言 法学
作者
Zachary William Riggenbach,John Van Eaton,A. V. Kelly,Ha Eun Kim,Jason Bingham
出处
期刊:Military Medicine [Oxford University Press]
标识
DOI:10.1093/milmed/usaf165
摘要

ABSTRACT Background Artificial Intelligence (AI) has become a key component of the U.S. Army Medical Modernization Strategy, which seeks to enhance military health care through innovative technologies. Within the Military Health System (MHS), AI applications in diagnostics, patient monitoring, logistical support, and trauma management are under active exploration. Applications Key initiatives include AI-driven telementoring, decision support tools, automated trauma documentation, and remote patient monitoring. These technologies aim to improve care delivery and operational efficiency in combat zones, particularly during mass casualty incidents and in resource-limited environments. Challenges Implementation faces significant obstacles, including the need for robust data collection methods, secure and interoperable storage solutions, and frameworks to address ethical and trust issues. Decentralized storage technologies, such as blockchain, and explainable AI systems are proposed to enhance reliability and transparency. Strategic Considerations Advancements by near-peer adversaries, such as China and Russia, in AI-driven military health care underscore the urgency for the United States to accelerate its integration efforts. The U.S. Army Medical Modernization Strategy emphasizes interagency collaboration and targeted research as critical components for maintaining a strategic edge. Conclusion Artificial Intelligence–driven automation offers a transformative pathway for military trauma care, enabling enhanced efficiency and resilience. Addressing implementation barriers and aligning efforts with the U.S. Army Medical Modernization Strategy are essential to ensure operational superiority and improved survival outcomes on the battlefield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wei完成签到,获得积分20
1秒前
知识四面八方来完成签到 ,获得积分10
1秒前
尤慧慧完成签到,获得积分20
2秒前
热电老白鼠完成签到,获得积分10
3秒前
wintersss完成签到,获得积分10
4秒前
小刘爱科研完成签到,获得积分10
4秒前
尤慧慧发布了新的文献求助10
5秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
7秒前
留胡子的小虾米完成签到,获得积分10
8秒前
周晴完成签到 ,获得积分10
9秒前
彗星入梦完成签到 ,获得积分10
10秒前
深情安青应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
Orange应助背后的大侠采纳,获得10
13秒前
13秒前
SciGPT应助眯眯眼的枕头采纳,获得10
16秒前
18秒前
迷路厉发布了新的文献求助10
19秒前
自由文博完成签到 ,获得积分10
19秒前
21秒前
彭于晏应助迅速曲奇采纳,获得30
21秒前
22秒前
23秒前
24秒前
背后的大侠完成签到,获得积分10
24秒前
cgx发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
24秒前
11发布了新的文献求助10
25秒前
26秒前
清新的音响完成签到 ,获得积分10
27秒前
27秒前
27秒前
28秒前
28秒前
29秒前
可靠世平发布了新的文献求助10
30秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867122
求助须知:如何正确求助?哪些是违规求助? 3409376
关于积分的说明 10663349
捐赠科研通 3133540
什么是DOI,文献DOI怎么找? 1728278
邀请新用户注册赠送积分活动 832879
科研通“疑难数据库(出版商)”最低求助积分说明 780510