催化作用
硫黄
过氧化氢
化学
氧气
密度泛函理论
过渡金属
吸附
金属
阴极
纳米技术
材料科学
化学工程
物理化学
计算化学
有机化学
工程类
作者
Xiehong Cao,Wenxian Liu,Jinxiu Feng,Henan Wang,Pu Wang,Dong Zheng,Wenhui Shi,Fangfang Wu,Tianqi Deng
出处
期刊:Angewandte Chemie
[Wiley]
日期:2025-04-26
卷期号:64 (27): e202506762-e202506762
被引量:4
标识
DOI:10.1002/anie.202506762
摘要
Abstract The direct four‐electron oxygen reduction reaction (4e − ORR) critically governs efficiency and lifespan in metal–air batteries and fuel cells, yet selectively suppressing competitive 2e − and stepwise 2e − pathways that generate corrosive hydrogen peroxide remains a major challenge. Herein, we demonstrate the strategic incorporation of secondary coordinated sulfur atoms into transition metal‐N‐C electrocatalysts to effectively promote direct 4e − ORR and simultaneously suppress undesirable 2e − pathways. Density functional theory (DFT) calculations and operando spectroscopy reveal that enhanced adsorption of key intermediate *OOH facilitates efficient O─O bond cleavage, underpinning altered catalytic selectivity. Importantly, this approach is universally applicable to various carbon‐based catalysts, including Co─N@C, Ni─N@C, Mn─N@C, and N@C. Specifically, a sulfur‐mediated Co─N/Co@C catalyst, comprising Co─N 4 sites and Co nanoparticles, dramatically lowers the 2e − O 2 ‐to‐H 2 O 2 rate constant to merely 0.05‐fold of its original value at 0.78 V. Consequently, Zn‐air batteries using Co─N/Co@C‐S as cathode exhibits an outstanding peak power density of 220 mW cm −2 , remarkable lifespan over 2500 h, and outstanding rate performance from 5 to 50 mA cm −2 . This work paves a generalizable route for designing highly active and selective electrocatalysts suitable for advanced long‐life energy storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI