Deep Underwater Image Quality Assessment with Explicit Degradation Awareness Embedding

图像质量 降级(电信) 人工智能 计算机科学 计算机视觉 水下 嵌入 图像处理 质量(理念) 图像(数学) 环境科学 模式识别(心理学) 地质学 电信 哲学 海洋学 认识论
作者
Qiuping Jiang,Yuese Gu,Zongwei Wu,Chongyi Li,Huan Xiong,Feng Shao,Zhihua Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 1297-1310
标识
DOI:10.1109/tip.2025.3539477
摘要

Underwater Image Quality Assessment (UIQA) is currently an area of intensive research interest. Existing deep learning-based UIQA models always learn a deep neural network to directly map the input degraded underwater image into a final quality score via end-to-end training. However, a wide variety of image contents or distortion types may correspond to the same quality score, making it challenging to train such a deep model merely with a single subjective quality score as supervision. An intuitive idea to solve this problem is to exploit more detailed degradation-aware information as supplementary guidance to facilitate model learning. In this paper, we devise a novel deep UIQA model with Explicit Degradation Awareness embedding, i.e., EDANet. To train the EDANet, a two-stage training strategy is adopted. First, a tailored Degradation Information Discovery subnetwork (DIDNet) is pre-trained to infer a residual map between the input degraded underwater image and its pseudoreference counterpart. The inferred residual map explicitly characterizes the local degradation of the input underwater image. The intermediate feature representations on the decoder side of DIDNet are then embedded into the Degradation-guided Quality Evaluation subnetwork (DQENet), which significantly enhances the feature characterization capability with higher degradation awareness for quality prediction. The superiority of our EDANet against 18 state-of-the-art methods has been well demonstrated by extensive comparisons on two benchmark datasets. The source code of our EDANet is available at https://github.com/yia-yuese/EDANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
朝朝暮暮发布了新的文献求助10
2秒前
gxmu6322完成签到,获得积分10
2秒前
3秒前
3秒前
everlasting完成签到,获得积分10
4秒前
健忘的灵槐完成签到,获得积分10
5秒前
5秒前
七七完成签到,获得积分10
6秒前
snowpie发布了新的文献求助10
7秒前
小狸崽子完成签到,获得积分10
7秒前
涵泽发布了新的文献求助10
8秒前
SciGPT应助vivia采纳,获得10
10秒前
Hello应助一二采纳,获得10
12秒前
12秒前
12秒前
田様应助欢呼的冰菱采纳,获得10
13秒前
领导范儿应助cheng采纳,获得10
13秒前
沉默夏真发布了新的文献求助30
16秒前
俭朴的一曲完成签到,获得积分10
17秒前
Akin完成签到,获得积分10
17秒前
zhou123432发布了新的文献求助10
17秒前
17秒前
所所应助njupt连赛通采纳,获得10
18秒前
鱼儿完成签到,获得积分10
20秒前
21秒前
xxxx完成签到 ,获得积分10
21秒前
23秒前
HNDuan完成签到,获得积分10
23秒前
24秒前
烟花应助晨雾锁阳采纳,获得10
24秒前
鸡鱼蚝完成签到,获得积分10
25秒前
隐形曼青应助冷静水蓝采纳,获得10
25秒前
25秒前
jenningseastera应助Akin采纳,获得10
26秒前
26秒前
26秒前
LuDans发布了新的文献求助20
27秒前
瀚泛完成签到,获得积分10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799006
求助须知:如何正确求助?哪些是违规求助? 3344720
关于积分的说明 10321316
捐赠科研通 3061197
什么是DOI,文献DOI怎么找? 1680067
邀请新用户注册赠送积分活动 806880
科研通“疑难数据库(出版商)”最低求助积分说明 763435