Intelligent design of shear wall layout based on graph neural networks

剪力墙 图形 计算机科学 人工神经网络 剪切(地质) 理论计算机科学 算法 人工智能 结构工程 工程类 地质学 岩石学
作者
Pengju Zhao,Wenjie Liao,Yuli Huang,Xinzheng Lu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:55: 101886-101886 被引量:74
标识
DOI:10.1016/j.aei.2023.101886
摘要

Structural scheme design of shear wall structures is important because it is the first stage that guides the project along its entire structural design process and significantly impacts the subsequent design stages. Design methods for shear wall layouts based on deep generative algorithms have been proposed and achieved some success. However, current generative algorithms rely on pixel images to design shear wall layouts, which have many model parameters and require intensive calculations. Moreover, it is challenging to use pixel image-based methods to reflect the topological characteristics of structures and connect them with the subsequent design stages. The above defects can be effectively solved by representing a shear wall structure in graph data form and adopting graph neural networks (GNNs), which have a robust topological-characteristic-extraction capability. However, there is no existing research using GNN methods in the design of shear wall structures owing to the lack of graph representation methods and high-quality structural graph data for shear walls. Therefore, this study develops an intelligent design method for shear wall layouts based on GNNs. Two graph representation methods for a shear wall structure—graph edge representation and graph node representation—are examined. A data augmentation method for shear wall structures in graph data form is established to enhance the universality of the GNN performance. An evaluation method for both graph representation methods is developed. Case studies show that the shear wall layout designed using the established GNN method is highly similar to the design by experienced engineers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
buerjia完成签到,获得积分10
刚刚
善学以致用应助陈陈采纳,获得10
刚刚
下次一定完成签到,获得积分10
刚刚
1秒前
有魅力的雨梅完成签到,获得积分10
1秒前
nuoran发布了新的文献求助10
1秒前
是真的宇航员啊完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
Pepsi发布了新的文献求助10
3秒前
冯瑾然发布了新的文献求助10
3秒前
3秒前
阳光下的味道完成签到,获得积分10
5秒前
5秒前
1821977451发布了新的文献求助10
5秒前
Meyako应助WSGQT采纳,获得20
6秒前
小白完成签到,获得积分10
6秒前
xjc23发布了新的文献求助10
6秒前
研友_nqy5jn完成签到,获得积分20
6秒前
6秒前
深情安青应助暗栀采纳,获得10
7秒前
留胡子的寄文完成签到,获得积分10
7秒前
小罗黑的完成签到,获得积分10
7秒前
Lee发布了新的文献求助50
8秒前
8秒前
吴彦祖应助漂亮的雁露采纳,获得10
8秒前
陪小凯许个愿完成签到,获得积分10
8秒前
天天向上发布了新的文献求助10
8秒前
9秒前
完美世界应助没天赋采纳,获得10
9秒前
耍酷寻双完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
脑洞疼应助may采纳,获得10
10秒前
我是老大应助yu_jy采纳,获得10
10秒前
Cheng发布了新的文献求助10
10秒前
研友_VZG7GZ应助办公的牛马采纳,获得10
10秒前
Dryad完成签到,获得积分10
11秒前
熊姣凤发布了新的文献求助10
11秒前
11秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5445655
求助须知:如何正确求助?哪些是违规求助? 4554886
关于积分的说明 14248876
捐赠科研通 4477167
什么是DOI,文献DOI怎么找? 2453241
邀请新用户注册赠送积分活动 1443922
关于科研通互助平台的介绍 1419974