Cerebral AVM segmentation from 3D rotational angiography images by convolutional neural networks

人工智能 分割 计算机科学 卷积神经网络 计算机视觉 深度学习 可视化 人工神经网络 模式识别(心理学)
作者
Mounir Lahlouh,Raphaël Blanc,Michel Piotin,Jérôme Szewczyk,Nicolas Passat,Yasmina Chenoune
出处
期刊:Neuroscience Informatics [Elsevier]
卷期号:3 (3): 100138-100138 被引量:7
标识
DOI:10.1016/j.neuri.2023.100138
摘要

Background and objective: 3D rotational angiography (3DRA) provides high quality images of the cerebral arteriovenous malformation (AVM) nidus that can be reconstructed in 3D. However, these reconstructions are limited to only 3D visualization without possible interactive exploration of geometric characteristics of cerebral structures. Refined understanding of the AVM angioarchitecture prior to treatment is mandatory and vascular segmentation is an important preliminary step that allow physicians analyze the complex vascular networks and can help guide microcatheters navigation and embolization of AVM. Methods: A deep learning method was developed for the segmentation of 3DRA images of AVM patients. The method uses a fully convolutional neural network with a U-Net-like architecture and a DenseNet backbone. A compound loss function, combining Cross Entropy and Focal Tversky, is employed for robust segmentation. Binary masks automatically generated from region-growing segmentation have been used to train and validate our model. Results: The developed network was able to achieve the segmentation of the vessels and the malformation and significantly outperformed the region-growing algorithm. Our experiments were performed on 9 AVM patients. The trained network achieved a Dice Similarity Coefficient (DSC) of 80.43%, surpassing other U-Net like architectures and the region-growing algorithm on the manually approved test set by physicians. Conclusions: This work demonstrates the potential of a learning-based segmentation method for characterizing very complex and tiny vascular structures even when the training phase is performed with the results of an automatic or a semi-automatic method. The proposed method can contribute to the planning and guidance of endovascular procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸭梨散打完成签到 ,获得积分10
1秒前
大模型应助钱砖家采纳,获得10
1秒前
2秒前
啊笔关注了科研通微信公众号
3秒前
4秒前
在水一方应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
eric888应助科研通管家采纳,获得150
5秒前
Orange应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
6秒前
zhonglv7应助科研通管家采纳,获得10
6秒前
海贵完成签到,获得积分10
6秒前
Ying应助科研通管家采纳,获得10
6秒前
哆啦十七应助科研通管家采纳,获得10
6秒前
哆啦十七应助科研通管家采纳,获得10
6秒前
eric888应助科研通管家采纳,获得150
6秒前
orixero应助科研通管家采纳,获得10
6秒前
希望天下0贩的0应助hhh采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得20
6秒前
默默善愁发布了新的文献求助10
6秒前
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
心灵美凝竹完成签到 ,获得积分10
8秒前
Yugiri发布了新的文献求助10
9秒前
10秒前
WYJ完成签到,获得积分10
12秒前
传奇3应助书生采纳,获得10
13秒前
王五一完成签到 ,获得积分10
13秒前
CatProMax完成签到,获得积分10
14秒前
14秒前
14秒前
风清扬发布了新的文献求助10
15秒前
16秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5380696
求助须知:如何正确求助?哪些是违规求助? 4504461
关于积分的说明 14018311
捐赠科研通 4413514
什么是DOI,文献DOI怎么找? 2424296
邀请新用户注册赠送积分活动 1417243
关于科研通互助平台的介绍 1395001