格式化
密度泛函理论
可逆氢电极
催化作用
电化学
晶界
吸附
材料科学
法拉第效率
双金属片
化学工程
纳米技术
电极
化学
计算化学
物理化学
工作电极
复合材料
工程类
微观结构
生物化学
作者
Tianyi Gao,Honghao Huang,Fei Zhang,Yutong Luo,Kening Sun,Fei Wang,Fang Fang,Yang Liu
出处
期刊:Angewandte Chemie
[Wiley]
日期:2025-07-23
卷期号:64 (39): e202510973-e202510973
被引量:2
标识
DOI:10.1002/anie.202510973
摘要
Abstract Electrochemical CO 2 reduction reaction (CO 2 RR) to formate offers a sustainable pathway for carbon‐neutral fuel production, yet achieving high selectivity and activity remains challenging due to competing hydrogen evolution. While grain boundaries (GBs) enhance catalytic performance, the impact of GB density, uniformity, and twisting angles remains unclear. Here, we engineer SnS nanoplates with high‐density GBs via cation exchange (CE), preserving sulfur frameworks while inducing strain‐driven domain segmentation. The GB‐SnS catalyst achieves a formate Faradaic efficiency (FE) of 98.9% at −1.0 V RHE , with a partial current density of 204.6 mA cm −2 at −1.2 V RHE , surpassing single‐crystalline (SC) SnS by 3.5‐fold. In situ spectroscopy and density functional theory (DFT) reveal high‐angle GBs lower *OCHO stabilization barriers while suppressing *H adsorption. Counterintuitively, small‐angle GBs raise the *OCHO barrier, impairing CO 2 RR—a finding that challenges the assumption that all GBs benefit catalysis. DFT further predicts out‐of‐plane rotational GBs similarly enhance stabilization, guiding future 3D defect engineering. The catalyst demonstrates industrial viability in a membrane electrode assembly (MEA), sustaining >80% FE at 200 mA cm −2 for 150 h. Statistical analysis of >200 GBs correlates twisting angles with adsorption strength, establishing an angle‐dependent design principle. This work decouples geometric/electronic GB effects and pioneers solution‐phase CE for scalable defect‐rich catalysts, advancing sustainable CO 2 utilization.
科研通智能强力驱动
Strongly Powered by AbleSci AI