Sequential Decision Making: From Decision Elicitation to Strategy Identification

鉴定(生物学) 决策分析 计算机科学 偏好诱导 专家启发 管理科学 商业决策图 决策工程 证据推理法 人工智能 运筹学 决策支持系统 数学 经济 偏爱 统计 植物 生物
作者
Evgeny Kagan,Stephen Leider,Özge Şahin
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2023.02381
摘要

Characterizing behavior in sequential problems is often complicated by the presence of multiple decision rules with overlapping predictions. To address this issue, we introduce a new experimental and econometric approach for identifying decision strategies in sequential contexts. This approach consists of eliciting conditional strategies (as opposed to direct choices) and measuring policy adherence via maximum-likelihood estimation (as opposed to counting coincidences). Applying this approach to several common types of sequential problems increases the proportion of uniquely identifiable subjects by up to a third relative to standard methods and yields the following findings. First, in search and stopping problems, decision makers respond less strongly to state and time of the dynamic problem than in problems that do not have a stopping structure. Second, decision rules are often biased toward being more accepting (less demanding) than the optimal policy would predict. Third, the format used to elicit decisions (menu-based choice versus numeric threshold entry) has a significant effect on policy adoption. In addition to identifying decision rules that better fit observed behavior in dynamic choice problems, these results have implications for firms serving customers who face sequential decisions. We use a revenue management example (optimal subscription service pricing) to show that failing to account for the relevant decision rules can reduce firm profits by up to 54%. This paper was accepted by Elena Katok, operations management. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.02381 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
浮游应助真实的一鸣采纳,获得10
3秒前
WY-zicaitang完成签到,获得积分10
6秒前
6秒前
迷路易形完成签到,获得积分10
6秒前
善学以致用应助Yuetler采纳,获得10
8秒前
CipherSage应助欣嫩谷采纳,获得10
9秒前
11秒前
胡一刀不归完成签到,获得积分10
13秒前
16秒前
18秒前
jkdzp完成签到 ,获得积分10
21秒前
赵童童童完成签到,获得积分20
21秒前
YY完成签到 ,获得积分10
23秒前
23秒前
科研通AI2S应助欣嫩谷采纳,获得10
23秒前
zz完成签到 ,获得积分10
24秒前
浮游应助螃蟹医生采纳,获得10
25秒前
25秒前
28秒前
远山完成签到 ,获得积分10
28秒前
Jiangnj发布了新的文献求助10
29秒前
30秒前
Zang_yeye发布了新的文献求助10
30秒前
zhou发布了新的文献求助10
30秒前
科研通AI5应助研ZZ采纳,获得10
32秒前
陈cxz完成签到 ,获得积分10
33秒前
Jiangnj完成签到,获得积分10
33秒前
34秒前
35秒前
8R60d8应助小灰采纳,获得10
35秒前
九沂完成签到,获得积分10
35秒前
会举重的树完成签到 ,获得积分10
39秒前
独孤幻月96应助zhou采纳,获得10
40秒前
orixero应助Hanaooooo采纳,获得10
42秒前
Beginner发布了新的文献求助30
42秒前
lunhui6453完成签到 ,获得积分10
42秒前
瑾进完成签到 ,获得积分10
43秒前
bsf123完成签到,获得积分10
43秒前
魔幻海豚发布了新的文献求助10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4804341
求助须知:如何正确求助?哪些是违规求助? 4120965
关于积分的说明 12750005
捐赠科研通 3854064
什么是DOI,文献DOI怎么找? 2122468
邀请新用户注册赠送积分活动 1144515
关于科研通互助平台的介绍 1035729