Dual Interfacial Engineering of Glass Fiber‐Reinforced Composites: Synergistic Enhancement via Hyperbranched Polyester‐Modified Resin and Rigid/Flexible Fiber Coatings

材料科学 复合材料 玻璃纤维 纤维 聚酯纤维
作者
Ran Li,Shanwei Chen,Wenbin Yang,Huiping Lin,Yiqiang Wu
出处
期刊:Polymer Composites [Wiley]
标识
DOI:10.1002/pc.70486
摘要

ABSTRACT Glass fiber‐reinforced polymer (GFRP) composites were prepared by hand lay‐up using unsaturated polyester resin (UPR) matrices in which a hyperbranched polyester (HBP) synthesized via a polyethylene glycol (PEG) core route was incorporated. Glass fibers (GFs) were functionalized to create “rigid” (HEA/TDI‐modified, m‐GF) and “flexible” (KH570‐modified, KH570‐GF) interfaces. HBP‐modified UPR composites exhibited enhanced tensile, flexural, and impact strengths by 62.2%, 17.5%, and 95.0%, respectively, versus unmodified counterparts. Introducing the rigid m‐GF interface further amplified these improvements, achieving strength gains of 96.1% (tensile), 90.9% (flexural), and 80.4% (impact). The flexible KH570‐GF interface yielded the most pronounced synergistic effect: the optimum system (KH570‐GF + 5 wt% HBP) achieved a tensile strength of 336.8 MPa (a 113% increase), a flexural strength of 622.1 MPa (93.6% increase), and an impact strength of 142.2 kJ m −2 (187% increase) relative to the baseline GF/UPR composite. Dynamic mechanical analysis confirmed increased glass transition temperatures, indicating enhanced thermal stability from improved crosslinking. Scanning electron microscopy demonstrated reduced fiber‐matrix debonding and suppressed crack propagation in the modified systems. The rigid interface primarily enhanced load transfer efficiency, whereas the flexible interface promoted energy absorption via interfacial slippage. These findings illustrate that independent tailoring of rigid or flexible interfaces provides distinct pathways for performance optimization, effectively overcoming the traditional strength–toughness trade‐off in GFRPs and offering customizable solutions for aerospace and structural applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zho发布了新的文献求助20
2秒前
隐形曼青应助弄潮儿采纳,获得10
2秒前
2秒前
2秒前
聪明的衬衫完成签到,获得积分10
5秒前
crazyfish完成签到,获得积分10
5秒前
5秒前
闪闪香菱发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
科研狂人发布了新的文献求助10
8秒前
Ykn完成签到,获得积分10
8秒前
9秒前
共享精神应助nail采纳,获得10
9秒前
11秒前
十一完成签到,获得积分10
11秒前
wanci应助火星上送终采纳,获得10
11秒前
蒋若风发布了新的文献求助10
12秒前
12秒前
悦耳的冥茗完成签到 ,获得积分10
12秒前
tsuki完成签到,获得积分10
13秒前
吴佳庆完成签到 ,获得积分10
13秒前
叶叶完成签到,获得积分10
13秒前
夹心发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
冷艳的天薇完成签到,获得积分10
14秒前
15秒前
孙靖博完成签到,获得积分10
15秒前
888777发布了新的文献求助10
15秒前
今后应助LL采纳,获得10
15秒前
16秒前
16秒前
今后应助Ian采纳,获得10
17秒前
17秒前
阿喵发布了新的文献求助10
18秒前
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610445
求助须知:如何正确求助?哪些是违规求助? 4694923
关于积分的说明 14885144
捐赠科研通 4722453
什么是DOI,文献DOI怎么找? 2545155
邀请新用户注册赠送积分活动 1509949
关于科研通互助平台的介绍 1473063