STExplorer: A Hierarchical Autonomous Exploration Strategy with Spatio-temporal Awareness for Aerial Robots

计算机科学 人工智能 水准点(测量) 弹道 运动规划 避障 障碍物 机器人 移动机器人 物理 大地测量学 天文 政治学 法学 地理
作者
Bolei Chen,Yongzheng Cui,Ping Zhong,Wang Yang,Yixiong Liang,Jianxin Wang
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:14 (6): 1-24 被引量:6
标识
DOI:10.1145/3595184
摘要

The autonomous exploration task we consider requires Unmanned Aerial Vehicles (UAVs) to actively navigate through unknown environments with the goal of fully perceiving and mapping the environments. Some existing exploration strategies suffer from rough cost budgets, ambiguous Information Gain (IG), and unnecessary backtracking exploration caused by Fragmented Regions (FRs). In our work, a hierarchical spatio-temporal-aware exploration framework is proposed to alleviate these problems. At the local exploration level, the Asymmetrical Traveling Salesman Problem (ATSP) is solved by comprehensively considering exploration time, IG, and heading consistency to avoid blindly exploring. Specifically, the exploration time is reasonably budgeted by fast marching in an artificial potential field. Meanwhile, a transformer-based map occupancy predictor is designed to assist in IG calculation by imagining spatial clues out of the Field of View (FoV), facilitating the prescient exploration. We verify that our local exploration is effective in alleviating the unnecessary back-and-forth movements caused by FRs and the interference of potential obstacle occlusion on the IG calculation. At the global exploration level, the classical Next Best View Points (NBVP) are generalized to Next Best Sub-Regions (NBSR) to choose informative sub-regions for further forward-looking exploration based on a well-designed utility function. Safe flight paths and dynamically feasible trajectories are reasonably generated throughout the exploration process by fast marching and B-spline curve optimization. Comparative simulations and benchmark tests demonstrate that our proposed exploration strategy is quite competitive in terms of exploration path length, total exploration time, and exploration ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
B612关注了科研通微信公众号
1秒前
清爽碧空发布了新的文献求助10
1秒前
1秒前
2秒前
sunyanghu369发布了新的文献求助10
2秒前
李世超发布了新的文献求助10
2秒前
4秒前
DZT完成签到,获得积分10
4秒前
5秒前
缥缈芷珍发布了新的文献求助10
6秒前
爱笑的眼睛关注了科研通微信公众号
7秒前
科研通AI6应助YKX采纳,获得10
7秒前
zhogwe完成签到,获得积分10
8秒前
科研通AI5应助冷静的方盒采纳,获得10
8秒前
舒适大米发布了新的文献求助10
8秒前
不安青牛应助syxz0628采纳,获得20
9秒前
乐乐应助热情大树采纳,获得10
9秒前
高贵鬼神关注了科研通微信公众号
9秒前
隐形曼青应助111采纳,获得10
10秒前
10秒前
情怀应助陈莹采纳,获得10
10秒前
jenniferli完成签到,获得积分10
11秒前
linkman应助HXDong123采纳,获得100
11秒前
田田圈完成签到,获得积分10
11秒前
12秒前
雪妮儿完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
F1t272发布了新的文献求助10
14秒前
14秒前
科研通AI6应助枕风采纳,获得10
15秒前
15秒前
夏天吃葡萄完成签到 ,获得积分10
15秒前
15秒前
16秒前
科研通AI2S应助79采纳,获得10
16秒前
憂xqc发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Critique du De mundo de Thomas White 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4385981
求助须知:如何正确求助?哪些是违规求助? 3878559
关于积分的说明 12082135
捐赠科研通 3522209
什么是DOI,文献DOI怎么找? 1933005
邀请新用户注册赠送积分活动 973991
科研通“疑难数据库(出版商)”最低求助积分说明 872179