微动
摩擦腐蚀
材料科学
磨料
打滑(空气动力学)
复合材料
钛合金
腐蚀
陶瓷
合金
立方氧化锆
冶金
主管(地质)
胶粘剂
缝隙腐蚀
电化学
图层(电子)
物理化学
化学
地质学
物理
地貌学
热力学
电极
作者
Jian Pu,Yali Zhang,Xiaogang Zhang,Xinlu Yuan,Shu Yang,Guoxian Zhang,Wen Cui,Qin Tan,Zhongmin Jin
标识
DOI:10.1016/j.jmbbm.2023.105860
摘要
The fretting corrosion at the head-neck interface of artificial hip joints is an important reason for the failure of prostheses. The Ti6Al4V alloy-zirconia-toughened alumina (ZTA) ceramic combination has been widely used to make the head and neck of artificial hip joints. In this study, its fretting corrosion behavior in simulated body fluid was studied by electrochemical monitoring, surface morphology characterization, and chemical composition analysis. A running condition fretting map (RCFM) of load and displacement was established, including three regimes, namely partial slip regime (PSR), mixed fretting regime (MFR), and gross slip regime (GSR). The friction dissipation energy increased gradually from the PSR to MFR and GSR. In the PSR, the damage mechanisms were slight abrasive wear and tribocorrosion at the edge of contact area, as well as extremely slight adhesive wear at the center. In the MFR, the damage mechanisms were mainly adhesive wear, abrasive wear, and corrosive wear. In the GSR, the damage mechanism was serious abrasive wear, fatigue wear, and corrosive wear combined with slight adhesive wear. Finally, an ion-concentration map was created, displaying the material-loss transition of different displacements and loads. The material loss increased with the increased displacement, and increased first and then decreased with the increased load.
科研通智能强力驱动
Strongly Powered by AbleSci AI