已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Handling missing data in well-log curves with a gated graph neural network

缺少数据 插补(统计学) 数据挖掘 计算机科学 人工神经网络 图形 测井 模式识别(心理学) 人工智能 机器学习 工程类 石油工程 理论计算机科学
作者
Chunbi Jiang,Dongxiao Zhang,Shifeng Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (1): D13-D30 被引量:5
标识
DOI:10.1190/geo2022-0028.1
摘要

Well logging is a common method that is used to obtain the rock properties of a formation. It is relatively frequent, however, that log information is incomplete due to cost limitations or borehole problems. Existing models predict missing well logs from a fixed combination of other available well logs. However, the missing well logs vary from well to well. We have proposed using a gated graph neural network (GNN) to handle the missing values in well-log curves. It takes sequential data, predicting each missing measurement in the data not only using other available variables measured at the same depth but also available measurements of neighboring observations. Meanwhile, the missing well logs and available well logs could be any possible combinations as long as they are mutually exclusive. This approach has two advantages: (1) the gated GNN does not need to build a specific model for each missing measurement or from every possible combination of available measurements and (2) it can be integrated into the training process of the following predictive model to perform classification tasks. We evaluate the gated GNN model along with two other models: the GRAPE model and the multiple imputation by chained equations (MICE)-gated recurrent unit (GRU) model, on a data set from the North Sea to perform a missing feature imputation task and a lithofacies identification task. The GRAPE model also is a graph-based model, and it predicts values for each missing measurement from available variables measured at the same depth. The MICE-GRU model is a combination of the MICE algorithm and GRU, which handles the feature imputation procedure and the lithofacies identification procedure separately. Our experiments find that the gated GNN model outperforms the MICE algorithm and the GRAPE model on the missing feature imputation task. For the lithofacies identification task, the gated GNN model also provides comparable results to the MICE-GRU model, and they both outperform the GRAPE model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘氓发布了新的文献求助100
刚刚
机灵芯完成签到 ,获得积分10
5秒前
kento发布了新的文献求助50
6秒前
好哇完成签到,获得积分10
9秒前
11秒前
秋蚓完成签到 ,获得积分10
13秒前
13秒前
CAOHOU应助科研通管家采纳,获得10
14秒前
CAOHOU应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
14秒前
YifanWang应助科研通管家采纳,获得20
14秒前
15秒前
CAOHOU应助科研通管家采纳,获得10
15秒前
YifanWang应助科研通管家采纳,获得20
15秒前
Akim应助刘氓采纳,获得10
15秒前
16秒前
风清扬应助巫寻采纳,获得10
16秒前
洪洗象发布了新的文献求助10
18秒前
小情绪完成签到 ,获得积分10
20秒前
一二完成签到 ,获得积分10
22秒前
22秒前
洪洗象完成签到,获得积分20
22秒前
斯文紫菜完成签到,获得积分10
23秒前
三个气的大门完成签到 ,获得积分10
24秒前
DrSong完成签到,获得积分10
24秒前
周健完成签到 ,获得积分10
28秒前
32秒前
Cccsy完成签到,获得积分10
34秒前
生而追梦不止完成签到 ,获得积分10
35秒前
XIN发布了新的文献求助10
39秒前
41秒前
MMMMMeng完成签到,获得积分10
41秒前
我爱科研发布了新的文献求助10
46秒前
47秒前
香菜大王完成签到 ,获得积分10
47秒前
徐zhipei完成签到 ,获得积分10
47秒前
waomi发布了新的文献求助10
50秒前
XIN完成签到,获得积分10
52秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4111448
求助须知:如何正确求助?哪些是违规求助? 3649782
关于积分的说明 11559595
捐赠科研通 3354912
什么是DOI,文献DOI怎么找? 1843142
邀请新用户注册赠送积分活动 909251
科研通“疑难数据库(出版商)”最低求助积分说明 826061