已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fuzzy Granule Density-Based Outlier Detection with Multi-Scale Granular Balls

离群值 异常检测 计算机科学 人工智能 模式识别(心理学) 数据挖掘 模糊逻辑 支持向量机
作者
Can Gao,Xiaofeng Tan,Jie Zhou,Weiping Ding,Witold Pedrycz
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-16
标识
DOI:10.1109/tkde.2024.3525003
摘要

Outlier detection refers to the identification of anomalous samples that deviate significantly from the distribution of normal data and has been extensively studied and used in a variety of practical tasks. However, most unsupervised outlier detection methods are carefully designed to detect specified outliers, while real-world data may be entangled with different types of outliers. In this study, we propose a fuzzy rough sets-based multi-scale outlier detection method to identify various types of outliers. Specifically, a novel fuzzy rough sets-based method that integrates relative fuzzy granule density is first introduced to improve the capability of detecting local outliers. Then, a multi-scale view generation method based on granular-ball computing is proposed to collaboratively identify group outliers at different levels of granularity. Moreover, reliable outliers and inliers determined by the three-way decision are used to train a weighted support vector machine to further improve the performance of outlier detection. The proposed method innovatively transforms unsupervised outlier detection into a semi-supervised classification problem and for the first time explores the fuzzy rough sets-based outlier detection from the perspective of multi-scale granular balls, allowing for high adaptability to different types of outliers. Extensive experiments carried out on both artificial and UCI datasets demonstrate that the proposed outlier detection method significantly outperforms the state-of-the-art methods, improving the results by at least 8.48% in terms of the Area Under the ROC Curve (AUROC) index. The source codes are released at https://github.com/Xiaofeng-Tan/MGBOD
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇马里奥完成签到 ,获得积分10
刚刚
结实初翠发布了新的文献求助10
3秒前
端庄半凡完成签到 ,获得积分10
3秒前
瞬间完成签到 ,获得积分10
3秒前
抠鼻公主完成签到 ,获得积分10
3秒前
4秒前
mint发布了新的文献求助10
5秒前
cookie486完成签到,获得积分10
6秒前
Jyy77完成签到 ,获得积分10
6秒前
7秒前
shjyang完成签到,获得积分10
7秒前
短巷完成签到 ,获得积分10
8秒前
代代完成签到 ,获得积分10
8秒前
王小裔完成签到 ,获得积分10
8秒前
Rn完成签到 ,获得积分10
8秒前
傲娇黑夜完成签到,获得积分10
9秒前
辛勤小鸽子完成签到 ,获得积分10
9秒前
我是老大应助喜悦夏青采纳,获得50
9秒前
Bin_Liu发布了新的文献求助10
10秒前
坐宝马吃地瓜完成签到 ,获得积分10
10秒前
12秒前
普里兹盐发布了新的文献求助30
12秒前
wshhhh完成签到,获得积分10
12秒前
想游泳的鹰完成签到,获得积分10
14秒前
芝士奶盖有点咸完成签到 ,获得积分10
15秒前
16秒前
侠客完成签到 ,获得积分10
17秒前
万崽秋秋糖完成签到 ,获得积分10
18秒前
JYH12138发布了新的文献求助10
18秒前
18秒前
英姑应助千帆采纳,获得10
19秒前
nansn完成签到,获得积分10
19秒前
wcy完成签到 ,获得积分10
20秒前
林星落完成签到 ,获得积分10
21秒前
Akim应助结实初翠采纳,获得10
21秒前
白云发布了新的文献求助10
21秒前
111完成签到 ,获得积分10
21秒前
酷酷的水儿完成签到,获得积分10
21秒前
21秒前
ooouiia完成签到 ,获得积分10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795440
求助须知:如何正确求助?哪些是违规求助? 3340420
关于积分的说明 10300235
捐赠科研通 3056989
什么是DOI,文献DOI怎么找? 1677332
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491