A Serial MRI-based Deep Learning Model to Predict Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma

鼻咽癌 深度学习 肿瘤科 医学 人工智能 内科学 计算机科学 放射治疗
作者
嘉毅 谷口,Junyi Peng,Wenbing Lv,Chen‐Fei Wu,Zhilong Chen,Guan‐Qun Zhou,Yaqin Wang,Li Lin,Lijun Lu,Ying Sun
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.230544
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop and evaluate a deep learning-based prognostic model for predicting survival in locoregionally- advanced nasopharyngeal carcinoma (LA-NPC) using serial MRI before and after induction chemotherapy (IC). Materials and Methods This multicenter retrospective study included 1039 LA-NPC patients (779 male, 260 female, mean age 44 [standard deviation: 11]) diagnosed between April 2009 and December 2015. A radiomics- clinical prognostic model (Model RC) was developed using pre-and post-IC MRI and other clinical factors using graph convolutional neural networks (GCN). The concordance index (C-index) was used to evaluate model performance in predicting disease-free survival (DFS). The survival benefits of concurrent chemoradiation therapy (CCRT) were analyzed in model-defined risk groups. Results The C-indexes of Model RC for predicting DFS were significantly higher than those of TNM staging in the internal (0.79 versus 0.53) and external (0.79 versus 0.62, both P < .001) testing cohorts. The 5-year DFS for the Model RC-defined low-risk group was significantly better than that of the high-risk group (90.6% versus 58.9%, P < .001). In high-risk patients, those who received CCRT had a higher 5-year DFS rate than those who did not (58.7% versus 28.6%, P = .03). There was no evidence of a difference in 5-year DFS rate in low-risk patients who did or did not receive CCRT (91.9% versus 81.3%, P = .19). Conclusion Serial MRI before and after IC can effectively predict survival in LA-NPC. The radiomics-clinical prognostic model developed using a GCN-based deep learning method showed good risk discrimination capabilities and may facilitate risk-adaptive therapy. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
23421完成签到 ,获得积分10
1秒前
小王同学完成签到,获得积分10
1秒前
lemon发布了新的文献求助20
2秒前
畅快夏天完成签到,获得积分10
2秒前
2秒前
jack完成签到,获得积分10
5秒前
丘比特应助典雅凌蝶采纳,获得10
6秒前
mj发布了新的文献求助10
7秒前
7秒前
弥生发布了新的文献求助40
7秒前
科研通AI5应助坚定的语芙采纳,获得10
13秒前
Hzz完成签到,获得积分10
13秒前
CipherSage应助复杂大象采纳,获得10
15秒前
勤劳的道罡完成签到,获得积分10
15秒前
不敢自称科研人完成签到,获得积分10
17秒前
liu完成签到,获得积分10
17秒前
dongli6536完成签到,获得积分10
20秒前
在水一方应助jitianxing采纳,获得10
21秒前
22秒前
文献求助人完成签到,获得积分10
24秒前
26秒前
QIN完成签到,获得积分10
28秒前
jiangzong完成签到 ,获得积分10
28秒前
JamesPei应助tothemoon采纳,获得10
29秒前
jitianxing发布了新的文献求助10
31秒前
笑点低醉易完成签到,获得积分20
33秒前
麦田的守望者完成签到,获得积分10
35秒前
38秒前
38秒前
111关闭了111文献求助
40秒前
40秒前
43秒前
leeyc发布了新的文献求助10
43秒前
狗子爱吃桃桃完成签到 ,获得积分10
44秒前
weijia完成签到 ,获得积分10
46秒前
48秒前
今后应助冰棍采纳,获得10
49秒前
万能图书馆应助qiqiguaiguqi采纳,获得10
51秒前
leeyc完成签到,获得积分10
53秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4165891
求助须知:如何正确求助?哪些是违规求助? 3701585
关于积分的说明 11686092
捐赠科研通 3390167
什么是DOI,文献DOI怎么找? 1859244
邀请新用户注册赠送积分活动 919597
科研通“疑难数据库(出版商)”最低求助积分说明 832230