A Serial MRI-based Deep Learning Model to Predict Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma

鼻咽癌 深度学习 肿瘤科 医学 人工智能 内科学 计算机科学 放射治疗
作者
嘉毅 谷口,Junyi Peng,Wenbing Lv,Chen‐Fei Wu,Zhilong Chen,Guan‐Qun Zhou,Yaqin Wang,Li Lin,Lijun Lu,Ying Sun
出处
期刊:Radiology [Radiological Society of North America]
被引量:1
标识
DOI:10.1148/ryai.230544
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop and evaluate a deep learning-based prognostic model for predicting survival in locoregionally- advanced nasopharyngeal carcinoma (LA-NPC) using serial MRI before and after induction chemotherapy (IC). Materials and Methods This multicenter retrospective study included 1039 LA-NPC patients (779 male, 260 female, mean age 44 [standard deviation: 11]) diagnosed between April 2009 and December 2015. A radiomics- clinical prognostic model (Model RC) was developed using pre-and post-IC MRI and other clinical factors using graph convolutional neural networks (GCN). The concordance index (C-index) was used to evaluate model performance in predicting disease-free survival (DFS). The survival benefits of concurrent chemoradiation therapy (CCRT) were analyzed in model-defined risk groups. Results The C-indexes of Model RC for predicting DFS were significantly higher than those of TNM staging in the internal (0.79 versus 0.53) and external (0.79 versus 0.62, both P < .001) testing cohorts. The 5-year DFS for the Model RC-defined low-risk group was significantly better than that of the high-risk group (90.6% versus 58.9%, P < .001). In high-risk patients, those who received CCRT had a higher 5-year DFS rate than those who did not (58.7% versus 28.6%, P = .03). There was no evidence of a difference in 5-year DFS rate in low-risk patients who did or did not receive CCRT (91.9% versus 81.3%, P = .19). Conclusion Serial MRI before and after IC can effectively predict survival in LA-NPC. The radiomics-clinical prognostic model developed using a GCN-based deep learning method showed good risk discrimination capabilities and may facilitate risk-adaptive therapy. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孝顺的觅风完成签到 ,获得积分10
刚刚
刚刚
1秒前
研友_LNMmW8发布了新的文献求助10
2秒前
CipherSage应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
喜悦的小土豆完成签到 ,获得积分10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
核桃应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
Smile应助科研通管家采纳,获得20
4秒前
浮游应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
研友_LpQgPn发布了新的文献求助10
6秒前
吴彦祖完成签到,获得积分20
7秒前
传奇3应助Leeeeee_采纳,获得10
7秒前
Jason完成签到 ,获得积分20
8秒前
二般人发布了新的文献求助10
8秒前
典雅的幼菱完成签到 ,获得积分20
9秒前
10秒前
怕黑三毒发布了新的文献求助10
11秒前
11秒前
小玲玲完成签到,获得积分10
11秒前
11秒前
顾矜应助nnnd77采纳,获得30
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4702028
求助须知:如何正确求助?哪些是违规求助? 4070135
关于积分的说明 12584752
捐赠科研通 3770227
什么是DOI,文献DOI怎么找? 2082285
邀请新用户注册赠送积分活动 1109736
科研通“疑难数据库(出版商)”最低求助积分说明 987908