亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Serial MRI-based Deep Learning Model to Predict Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma

鼻咽癌 深度学习 肿瘤科 医学 人工智能 内科学 计算机科学 放射治疗
作者
嘉毅 谷口,Junyi Peng,Wenbing Lv,Chen‐Fei Wu,Zhilong Chen,Guan‐Qun Zhou,Yaqin Wang,Li Lin,Lijun Lu,Ying Sun
出处
期刊:Radiology [Radiological Society of North America]
被引量:1
标识
DOI:10.1148/ryai.230544
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop and evaluate a deep learning-based prognostic model for predicting survival in locoregionally- advanced nasopharyngeal carcinoma (LA-NPC) using serial MRI before and after induction chemotherapy (IC). Materials and Methods This multicenter retrospective study included 1039 LA-NPC patients (779 male, 260 female, mean age 44 [standard deviation: 11]) diagnosed between April 2009 and December 2015. A radiomics- clinical prognostic model (Model RC) was developed using pre-and post-IC MRI and other clinical factors using graph convolutional neural networks (GCN). The concordance index (C-index) was used to evaluate model performance in predicting disease-free survival (DFS). The survival benefits of concurrent chemoradiation therapy (CCRT) were analyzed in model-defined risk groups. Results The C-indexes of Model RC for predicting DFS were significantly higher than those of TNM staging in the internal (0.79 versus 0.53) and external (0.79 versus 0.62, both P < .001) testing cohorts. The 5-year DFS for the Model RC-defined low-risk group was significantly better than that of the high-risk group (90.6% versus 58.9%, P < .001). In high-risk patients, those who received CCRT had a higher 5-year DFS rate than those who did not (58.7% versus 28.6%, P = .03). There was no evidence of a difference in 5-year DFS rate in low-risk patients who did or did not receive CCRT (91.9% versus 81.3%, P = .19). Conclusion Serial MRI before and after IC can effectively predict survival in LA-NPC. The radiomics-clinical prognostic model developed using a GCN-based deep learning method showed good risk discrimination capabilities and may facilitate risk-adaptive therapy. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huo完成签到,获得积分10
1秒前
xiaohaitang完成签到 ,获得积分10
3秒前
娜娜子完成签到 ,获得积分10
3秒前
喜悦宫苴完成签到,获得积分10
4秒前
4秒前
山川日月完成签到,获得积分10
5秒前
volunteer完成签到 ,获得积分10
6秒前
赘婿应助快乐的萝莉采纳,获得10
6秒前
6秒前
情怀应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
9秒前
movinglee完成签到,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
淡定的健柏完成签到 ,获得积分10
10秒前
Shiku完成签到,获得积分10
11秒前
领导范儿应助MINGKKK采纳,获得10
12秒前
寄往光明发布了新的文献求助10
13秒前
16秒前
clhoxvpze完成签到 ,获得积分10
16秒前
自由的无色完成签到 ,获得积分10
19秒前
FashionBoy应助ceeray23采纳,获得20
26秒前
28秒前
朝阳区李知恩应助gxfang采纳,获得30
28秒前
33秒前
34秒前
雷雨完成签到,获得积分10
36秒前
英俊的铭应助lxjjj采纳,获得10
37秒前
37秒前
稳重岩完成签到 ,获得积分10
37秒前
PennySun发布了新的文献求助10
38秒前
40秒前
tjnksy完成签到,获得积分10
40秒前
科研通AI5应助雷雨采纳,获得10
40秒前
卧镁铀钳完成签到 ,获得积分10
41秒前
华仔应助雨做的云霞采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5172821
求助须知:如何正确求助?哪些是违规求助? 4362970
关于积分的说明 13584901
捐赠科研通 4211189
什么是DOI,文献DOI怎么找? 2309687
邀请新用户注册赠送积分活动 1308759
关于科研通互助平台的介绍 1256014