稳态(化学)
传热
德拉姆
马尔科夫蒙特卡洛
热的
计算机科学
核工程
热力学
物理
化学
工程类
人工智能
贝叶斯概率
计算机硬件
物理化学
作者
Мuhammad Abid,Tayyaba Akhtar,H. Bhatt
标识
DOI:10.31181/sems31202539a
摘要
This research addresses the limitations of traditional deterministic methods in capturing uncertainties in heat transfer systems, particularly in parameter estimation and uncertainty quantification. We aim to evaluate and compare Delayed Rejection Adaptive Metropolis (DRAM) and Markov Chain Monte Carlo (MCMC) methods for uncertainty quantification in steady-state heat transfer, using experimental data from a copper rod with 15 temperature measurements. The study estimates heat flux and convective heat transfer coefficient parameters, comparing results with Ordinary Least Squares (OLS) estimation. Results show DRAM produces tighter parameter distributions (0.2312) compared to MCMC (0.2641), while both methods yield similar mean estimates and demonstrate strong negative correlation between parameters. A comparison with OLS shows close agreement across all three methods, concluding that DRAM provides slightly superior performance in parameter estimation accuracy while all methods effectively capture parameter uncertainties in steady-state heat transfer analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI