In‐line prediction of viability and viable cell density through machine learning‐based soft sensor modeling and an integrated systems approach: An industrially relevant PAT case study

生物制造 过程分析技术 计算机科学 偏最小二乘回归 过程(计算) 高斯过程 机器学习 软传感器 数据挖掘 人工智能 高斯分布 工程类 在制品 生物技术 量子力学 生物 操作系统 物理 运营管理
作者
Shivesh K. Suman,Michaela Murr,J. E. Crowe,S. Holt,J.C. Morris,Andrew Yongky,Kyle McElearney,Glen Bolton
出处
期刊:Biotechnology Progress [Wiley]
卷期号:41 (3): e3520-e3520
标识
DOI:10.1002/btpr.3520
摘要

Abstract The biopharmaceutical industry is shifting toward employing digital analytical tools for improved understanding of systems biology data and production of quality products. The implementation of these technologies can streamline the manufacturing process by enabling faster responses, reducing manual measurements, and building continuous and automated capabilities. This study discusses the use of soft sensor models for prediction of viability and viable cell density (VCD) in CHO cell culture processes by using in‐line optical density and permittivity sensors. A significant innovation of this study is the development of a simplified empirical model and adoption of an integrated systems approach for in‐line viability prediction. The initial evaluation of this viability model demonstrated promising accuracy with 96% of the residuals within a ±5% error limit and a Final Day mean absolute percentage error of ≤5% across various scales and process conditions. This model was integrated with a VCD prediction model utilizing Gaussian Process Regressor with Matern Kernel (nu = 0.5), selected from over a hundred advanced machine learning techniques. This VCD prediction model had an R 2 of 0.92 with 89% predictions within ±10% error and significantly outperformed the commonly used partial least squares regression models. The results validated the use of these models for real‐time in‐line prediction of viability and VCD and highlighted the potential to substantially reduce reliance on labor‐intensive discrete offline measurements. The integration of these innovative technologies aligns with regulatory guidelines and establishes a foundation for further advancements in the biomanufacturing industry, promising improved process control, efficiency, and compliance with quality standards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
悦耳易完成签到,获得积分10
1秒前
积极奇异果完成签到,获得积分10
1秒前
昭昭完成签到,获得积分10
1秒前
2秒前
2秒前
Ming完成签到,获得积分20
2秒前
Nicolas完成签到,获得积分10
3秒前
3秒前
gao完成签到,获得积分10
3秒前
3秒前
出去玩完成签到,获得积分10
4秒前
蠢宝贝发布了新的文献求助10
4秒前
4秒前
kxy0311发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
大模型应助fishway采纳,获得10
5秒前
昭昭发布了新的文献求助30
5秒前
霜降完成签到,获得积分10
5秒前
fsafs发布了新的文献求助80
6秒前
6秒前
等待宛白完成签到,获得积分10
6秒前
AnasYusuf发布了新的文献求助10
6秒前
夭华关注了科研通微信公众号
6秒前
无花果应助LM采纳,获得10
7秒前
May发布了新的文献求助30
7秒前
威武的成风完成签到,获得积分10
7秒前
xwwdcg发布了新的文献求助10
7秒前
test发布了新的文献求助10
7秒前
wuyang完成签到 ,获得积分10
8秒前
8秒前
飘逸的白玉完成签到,获得积分10
8秒前
杰克开膛手完成签到,获得积分10
8秒前
禾沐发布了新的文献求助10
8秒前
顺利甜瓜发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
研友_VZG7GZ应助洋洋得意采纳,获得10
9秒前
22553完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512125
求助须知:如何正确求助?哪些是违规求助? 4606563
关于积分的说明 14500223
捐赠科研通 4541983
什么是DOI,文献DOI怎么找? 2488756
邀请新用户注册赠送积分活动 1470848
关于科研通互助平台的介绍 1443052