Quasi-Phase Equilibrium Prediction of Multi-Element Alloys Based on Machine Learning and Deep Learning

人工智能 机器学习 深度学习 计算机科学 领域(数学) 卷积神经网络 相(物质) 人工神经网络 多层感知器 算法 数学 物理 量子力学 纯数学
作者
Changsheng Zhu,Borui Zhao,José Naranjo,Zihao Gao,Li Feng
出处
期刊:Computers, materials & continua 卷期号:76 (1): 49-64
标识
DOI:10.32604/cmc.2023.036729
摘要

In this study, a phase field model is established to simulate the microstructure formation during the solidification of dendrites by taking the Al-Cu-Mg ternary alloy as an example, and machine learning and deep learning methods are combined with the Kim-Kim-Suzuki (KKS) phase field model to predict the quasi-phase equilibrium. The paper first uses the least squares method to obtain the required data and then applies eight machine learning methods and five deep learning methods to train the quasi-phase equilibrium prediction models. After obtaining different models, this paper compares the reliability of the established models by using the test data and uses two evaluation criteria to analyze the performance of these models. This work find that the performance of the established deep learning models is generally better than that of the machine learning models, and the Multilayer Perceptron (MLP) based quasi-phase equilibrium prediction model achieves the best performance. Meanwhile the Convolutional Neural Network (CNN) based model also achieves competitive results. The experimental results show that the model proposed in this paper can predict the quasi-phase equilibrium of the KKS phase-field model accurately, which proves that it is feasible to combine machine learning and deep learning methods with phase-field model simulation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vv发布了新的文献求助10
1秒前
早日发文章完成签到 ,获得积分10
1秒前
2秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
英勇发布了新的文献求助10
6秒前
豆小豆发布了新的文献求助10
7秒前
8秒前
Hao完成签到,获得积分10
8秒前
搜集达人应助坚定镜子采纳,获得10
8秒前
yoyo20012623完成签到,获得积分10
9秒前
9秒前
wenwen完成签到,获得积分10
9秒前
9秒前
浮游应助linmo采纳,获得10
10秒前
czb666发布了新的文献求助10
11秒前
Lucas应助猪猪hero采纳,获得10
13秒前
13秒前
房天川发布了新的文献求助10
14秒前
归尘发布了新的文献求助10
14秒前
MalowZhang完成签到,获得积分10
15秒前
不是假笑女王完成签到,获得积分10
15秒前
蘑菇发布了新的文献求助10
15秒前
Kelly完成签到,获得积分10
15秒前
香蕉觅云应助qqqJUAN采纳,获得10
16秒前
dydydyd完成签到,获得积分10
16秒前
17秒前
Coco完成签到 ,获得积分10
18秒前
18秒前
充电宝应助暴躁的酸奶采纳,获得10
18秒前
czb666完成签到,获得积分10
19秒前
19秒前
思源应助cc采纳,获得10
20秒前
刘金金完成签到,获得积分10
21秒前
豆小豆完成签到,获得积分10
22秒前
科研通AI6应助科研通管家采纳,获得30
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
ding应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490133
求助须知:如何正确求助?哪些是违规求助? 4588844
关于积分的说明 14421594
捐赠科研通 4520646
什么是DOI,文献DOI怎么找? 2476796
邀请新用户注册赠送积分活动 1462282
关于科研通互助平台的介绍 1435188