Machine Learning for Predicting Mycotoxin Occurrence in Maize

真菌毒素 种植 黄曲霉毒素 稳健性(进化) 线性回归 人工神经网络 污染 数学 回归分析 环境科学 农学 农业工程 机器学习 统计 计算机科学 生物技术 生物 工程类 农业 生态学 生物化学 基因
作者
Marco Camardo Leggieri,Marco Mazzoni,Paola Battilani
出处
期刊:Frontiers in Microbiology [Frontiers Media SA]
卷期号:12 被引量:41
标识
DOI:10.3389/fmicb.2021.661132
摘要

Meteorological conditions are the main driving variables for mycotoxin-producing fungi and the resulting contamination in maize grain, but the cropping system used can mitigate this weather impact considerably. Several researchers have investigated cropping operations' role in mycotoxin contamination, but these findings were inconclusive, precluding their use in predictive modeling. In this study a machine learning (ML) approach was considered, which included weather-based mechanistic model predictions for AFLA-maize and FER-maize [predicting aflatoxin B1 (AFB1) and fumonisins (FBs), respectively], and cropping system factors as the input variables. The occurrence of AFB1 and FBs in maize fields was recorded, and their corresponding cropping system data collected, over the years 2005-2018 in northern Italy. Two deep neural network (DNN) models were trained to predict, at harvest, which maize fields were contaminated beyond the legal limit with AFB1 and FBs. Both models reached an accuracy >75% demonstrating the ML approach added value with respect to classical statistical approaches (i.e., simple or multiple linear regression models). The improved predictive performance compared with that obtained for AFLA-maize and FER-maize was clearly demonstrated. This coupled to the large data set used, comprising a 13-year time series, and the good results for the statistical scores applied, together confirmed the robustness of the models developed here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
cc2713206完成签到,获得积分0
刚刚
1秒前
苦涩油麦菜完成签到,获得积分10
1秒前
2秒前
所所应助LiSiyi采纳,获得10
2秒前
nn发布了新的文献求助10
2秒前
沉默采文完成签到,获得积分10
3秒前
3秒前
Yuksn发布了新的文献求助200
4秒前
4秒前
4秒前
ALEXAA发布了新的文献求助10
5秒前
6秒前
6秒前
科目三应助liushuaihao采纳,获得10
6秒前
Eureka发布了新的文献求助10
7秒前
7秒前
7秒前
ZHANG完成签到,获得积分10
7秒前
MH发布了新的文献求助10
8秒前
8秒前
充电宝应助自然的亦寒采纳,获得10
9秒前
风趣谷秋发布了新的文献求助10
9秒前
独特的豌豆完成签到,获得积分10
9秒前
9秒前
nn完成签到,获得积分10
10秒前
Corner完成签到,获得积分20
11秒前
潘榆完成签到,获得积分10
11秒前
11秒前
山大琦子发布了新的文献求助10
11秒前
蒋杰完成签到,获得积分10
12秒前
啾比文完成签到,获得积分10
12秒前
Lucas应助David采纳,获得10
12秒前
wqwq69完成签到,获得积分10
13秒前
田様应助hcy采纳,获得10
13秒前
13秒前
13秒前
zxc发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472385
求助须知:如何正确求助?哪些是违规求助? 4574678
关于积分的说明 14347789
捐赠科研通 4502046
什么是DOI,文献DOI怎么找? 2466815
邀请新用户注册赠送积分活动 1454881
关于科研通互助平台的介绍 1429206